Chemistry within Megamolecules: Regiospecific Functionalization after Construction of Phosphorus Dendrimers

Christophe Larré, Daniel Bressolles, Cédric Turrin, Bruno Donnadieu, Anne-Marie Caminade,* and Jean-Pierre Majoral*

Contribution from the Laboratoire de Chimie de Coordination du CNRS, 205 Route de Narbonne, 31077 Toulouse Cedex 4, France

Received August 4, 1998

Abstract: The synthesis of dendrimers including P=N-P=S linkages specifically placed at some generations within the dendrimeric architecture allows the grafting of several types of functional groups at site- and depthspecific locations in the internal layers. The synthesis is carried out up to the fourth generation starting from a difunctional core, or up to the third generation starting from a hexafunctional core. These dendrimers include 2, 6, or 18 P=N-P=S groups, depending on the type of core and the generation considered. The functional groups are introduced by several types of reactions. First, the strong polarization of the P=N-P=S linkage induces a facile reactivity with various alkyl triflates such as methyl, allyl, and propargyl triflates, leading to the formation of functionalized phosphonium salts $[P=N=P-S-R]^+$. The alkylation induces a weakening of the P-S bond which is cleaved with P(NMe₂)₃, leading to the formation of internal aminophosphite groups [P=N-P:]. These highly reactive tricoordinated phosphorus atoms are alkylated by methyl or allyl iodide, leading to a second series of functionalized dendrimers including phosphonium salts at some precise internal layers. A third series of internally functionalized dendrimers is obtained by the Staudinger reaction of functionalized azides with the aminophosphite internal groups. Isothiocyanate, aldehyde, and primary amine derivatives have been grafted regiospecifically in this way [P=N-P=N-R]. The reactivity of the aldehyde internal functions leading to the grafting of azides or crown-ethers is also described.

Introduction

The study of mesoscopic systems and nanostructures receives increasing attention, and among them, the study of dendrimers¹ appears as a very dynamic topic. Indeed, these highly branched oligomers with precise molecular architectures built by repetitive synthetic cycles, offer a range of applications and properties. Up to now, most of the work devoted to dendrimers concerned the synthesis and the transformation of surface functional groups.^{1,2} In addition, some specific reactions at the level of the core have been reported,³ but very few papers deal with the reactivity of internal functions after the synthesis of the dendrimer. Furthermore, most of these reactions concerning lithiation,⁴ protonation,⁵ complexation,⁶ or the obtention of polyradicals⁷ are not layer-specific. In fact, only one group has reported site- and depth-specific reactions⁸ before our own work.

In preliminary reports, we have demonstrated the permeability of phosphorus containing dendrimers toward small molecules such as alkyltriflates, even for high generations.^{9,10} Indeed, the presence of polar P=N-P=S linkages, precisely placed at some

generations within the dendrimeric superstructure, allows the regiospecific grafting of methylium groups only at the generations containing this linkage, even at the core of the seventh generation.9 Furthermore, we have shown that the dendrimeric structure is sufficiently flexible to accommodate very bulky

(3) For pionneering work, see for example: (a) Hawker, C.; Fréchet, J. M. J. J. Chem. Soc., Chem. Commun. 1990, 1010. (b) Hawker, C.; Fréchet, J. M. J. J. Am. Chem. Soc. 1990, 112, 7638.

(4) Lochmann, L.; Wooley, K. L.; Ivanova, P. T.; Fréchet, J. M. J. J. Am. Chem. Soc. 1993, 115, 7043.

(5) (a) Ottaviani, M. F.; Montaldi, F.; Romanelli, M.; Turro, N. J.; Tomalia, D. A. J. Phys. Chem. 1996, 100, 11033. (b) Koper, G. M. J.; van Genderen, M. H. P.; Elissen-Roman, C.; Baars, M. W. P. L.; Meijer, E. W.; Borkovec, M. J. Am. Chem. Soc. 1997, 119, 6512.

(6) (a) Ottaviani, M. F.; Bossmann, S.; Turro, N. J.; Tomalia, D. A. J. Am. Chem. Soc. 1994, 116, 661. (b) Ottaviani, M. F.; Montaldi, F.; Turro, N. J.; Tomalia, D. A. J. Phys. Chem. B 1997, 101, 158.
 (7) Rajca, A.; Utamapanya, S. J. Am. Chem. Soc. 1993, 115, 10688.

^{*} Corresponding authors. Fax: +33 5 61 55 30 03. E-mail: majoral@ lcc-toulouse.fr or caminade@lcc-toulouse.fr.

⁽¹⁾ For reviews on dendrimers see: (a) Tomalia, D. A.; Naylor, A.-M.; Goddard, W. A., III. Angew. Chem., Int. Ed. Engl. 1990, 29, 138. (b) Tomalia, D. A.; Durst, H. D. In Supramolecular Chemistry I: Directed Synthesis and Molecular Recognition; Topics in Current Chemistry 165; Weber, E., Ed.; Springer-Verlag: Berlin, 1993; pp 193-313. (c) Issberner, J.; Moors, R.; Vögtle, F. Angew. Chem., Int. Ed. Engl. 1994, 33, 2413. (d) Caminade, A.-M.; Majoral, J.-P. Main Group Chem. News 1995, 3, 14. (e) Ardoin, N.; Astruc, D. Bull. Soc. Chim. Fr. 1995, 132, 876. (f) Newkome, G. R.; Moorefield, C. N.; Vögtle, F. In Dendritic Molecules; VCH: Weinheim, Germany, 1996. (g) Gudat, D. Angew. Chem., Int. Ed. Engl. 1997, 36, 1951. (h) Caminade, A. M.; Laurent, R.; Majoral, J. P. In Les Dendrimères; Ed. Association Ecrin: Paris, 1998.

⁽²⁾ See for example: (a) Launay, N.; Caminade, A.-M.; Lahana, R.; Majoral, J.-P. Angew. Chem., Int. Ed. Engl. 1994, 33, 1589. (b) Launay, N.; Caminade, A.-M.; Majoral, J.-P. J. Am. Chem. Soc. 1995, 117, 3282. (c) Galliot, C.; Prévôté, D.; Caminade, A.-M.; Majoral, J.-P. J. Am. Chem. Soc. **1995**, 117, 5470. (d) Slany, M.; Bardaji, M.; Casanove, M. J.; Caminade, A.-M.; Majoral, J.-P.; Chaudret, B. J. Am. Chem. Soc. 1995, 117, 9764. (e) Launay, N.; Slany, M.; Caminade, A.-M.; Majoral, J.-P. J. Org. Chem. 1996, 61, 3799. (f) Lartigue, M.-L.; Slany, M.; Caminade, A.-M.; Majoral, J.-P. Chem. Eur. J. **1996**, 2, 1417. (g) Slany, M.; Caminade, A.-M.; Majoral, J.-P. Tetrahedron Lett. **1996**, *37*, 9053. (h) Bardaji, M.; Kustos, M.; Caminade, A.-M.; Majoral, J.-P.; Chaudret B. Organometallics 1997, 16, 403. (i) Slany M.; Bardaji, M.; Caminade, A.-M.; Chaudret, B.; Majoral, J.-P. Inorg. Chem. 1997, 36, 1939. (j) Bardaji, M.; Caminade, A.-M.; Majoral, J.-P.; Chaudret B. Organometallics 1997, 16, 3489. (k) Prévôté, D. Caminade, A.-M.; Majoral, J.-P. J. Org. Chem. 1997, 62, 4834. (1) Lartigue, M.-L.; Caminade, A.-M.; Majoral, J.-P. Tetrahedron Asym. 1997, 8, 2697. (m) Prévôté, D.; Le Roy-Gourvenec, S.; Caminade, A.-M.; Masson, S.; Majoral, J.-P. Synthesis 1997, 1199. (n) Lartigue, M.-L.; Donnadieu, B.; Galliot, C.; Caminade, A.-M.; Majoral, J.-P.; Fayet, J.-P. Macromolecules **1997**, *30*, 7335.

I) N₃P(S)(OC₆H₄CHO)₂ II) Cl₂P(S)NMeNH₂ III) NaOC₆H₄CHO IV) H₂NNHMe V) Ph₂PCH₂OH VI) NaOC₆H₅

entities: six dendrons have been grown up to the third generation inside a main dendrimer which had been chemically modified at well-defined sites in the network.¹¹

We report here an extension of these preliminary results, the grafting of various functional groups when and where desired within the dendrimer after its construction, without any branch degradation.

Results and Discussion

Synthesis of Dendrimers. The design of dendrimers is carried out with the aim of including P=N-P=S groups in

precise sites which could be activated after the synthesis of the dendrimer. For this purpose, two different cores are used: the 1,6-bis(diphenylphosphinohexane) $1-[G_0]$ and the hexachloro-cyclotriphosphazene $3-[G_0]$.

Starting from 1-[G₀], P=N-P=S linkages are obtained directly by a Staudinger reaction with N₃P(S)[OC₆H₄CHO]₂ which affords $1-[G'_0]$ (Scheme 1). The growing of the dendrimeric structure is pursued up to the formation of compound $1-[G'_2]$ by using alternatively the condensation of aldehyde functions with H₂NNMeP(S)Cl₂ and the reaction of 4-hydroxybenzaldehyde sodium salt with P(S)Cl₂ end groups.^{2a} Starting from $1-[G'_2]$ other P=N-P=S linkages are introduced in three steps: (i) condensation of aldehyde end groups with methylhydrazine, (ii) Mannich type condensation with Ph₂PCH₂OH, and (iii) Staudinger reaction with N₃P(S)[OC₆H₄CHO]₂. This sequence of reactions induces the formation of 16 P=N-P=S groups at the level of the third generation. Condensation with H₂NNMeP(S)Cl₂ affords dendrimer 1-[G₄] which possess 64 Cl on the surface of the dendrimer and 18 P=N-P=S linkages: two at the core and 16 at the third generation. To

^{(8) (}a) Newkome, G. R.; Moorefield, C. N. Polym. Preprints 1993, 34,
75. (b) Newkome, G. R.; Moorefield, C. N. Macromol. Symp. 1994, 77,
63.(c) Newkome, G. R.; Moorefield, C. N.; Keith, J. M.; Baker, G. R.; Escamilla, G. H. Angew. Chem., Int. Ed. Engl. 1994, 33, 666. (d) Newkome,
G. R. J. Heterocyclic Chem. 1996, 33, 1445.

⁽⁹⁾ Larré, C.; Caminade, A.-M.; Majoral, J.-P. Angew. Chem., Int. Ed. Engl. 1997, 36, 596.

⁽¹⁰⁾ Larré, C.; Donnadieu, B.; Caminade, A.-M.; Majoral, J.-P. J. Am. Chem. Soc. **1998**, *120*, 4029.

⁽¹¹⁾ Galliot, C.; Larré, C.; Caminade, A.-M.; Majoral, J.-P. Science 1997, 277, 1981.

Scheme 2

I) N₃P(S)(OC₆H₄CHO)₂ II) Ci₂P(S)NMeNH₂ III) NaOC₆H₄CHO IV) H₂NNHMe V) Ph₂PCH₂OH VI) NaOC₆H₅

Scheme 3

avoid side reactions with the $P(S)Cl_2$ groups which could occur when studying the reactivity of the P=N-P=S linkages, phenol sodium salt is added to 1-[G₁], 1-[G₂], and 1-[G₄] leading to 2-[G₁], 2-[G₂], and 2-[G₄], respectively.

A similar reaction scheme is also applied starting from the hexachloro cyclotriphosphazene **3-**[**G**₀]. In this case, the P=N– P=S groups are included at the level of the first generation, using the procedure already described in Scheme 1. Reactions with NaOC₆H₄CHO, H₂NNMeH, Ph₂PCH₂OH, N₃P(S)[OC₆H₄-CHO]₂, and H₂NNMeP(S)Cl₂ successively, afford compound **3-**[**G**₂]. Starting from compound **3-**[**G**₂], the alternate use of NaOC₆H₄CHO and H₂NNMeP(S)Cl₂ finally leads to dendrimer **3-**[**G**₃] which possess 6 P=N-P=S linkages at the level of the first generation and 48 Cl on the surface. In this case also, the surface of the dendrimer is inactivated by reacting **3-**[**G**₂] and **3-**[**G**₃] with NaOC₆H₅, to afford dendrimers **4-**[**G**₂] and **4-**[**G**₃], respectively (Scheme 2).

All the dendrimers are obtained in quantitative yields as crude products and in >90% yield after work up. All the reactions are monitored by 31 P NMR, which, in addition to 1 H and 13 C NMR, and IR spectra is a unique and irreplaceable tool to characterize all these compounds. 2a,f,n,11

Reactions with Alkyl Triflates. The first phosphoniumcontaining dendrimers were built with phosphonium salts at all the branching points of each generation.¹² For our part, we have described dendrimers in which phosphonium salts were created only at specific generations after the synthesis of the dendrimer.⁹ Indeed, the strong polarity of the P=N-P=S linkage (P⁺-N= P-S⁻) allows the regiospecific alkylation of the sulfur atom of this linkage, whereas the other P=S bonds of the molecule do not react. This reaction was illustrated first with methyltriflate on compound **1-**[G₁]⁹ (Scheme 3). The monitoring of this reaction by ³¹P NMR indicated the total disappearance of both doublets corresponding to the P=N-P=S linkages of **1-**[G₁]

Table 1. Crystal Data for Dendrimers 5-[G₁] and 8-[G₁]

compound	5-[G ₁]	8-[G ₁]
formula	$[C_{64}H_{70}N_{10}O_4S_6P_8Cl_8]$ -	$[C_{68}H_{70}N_{10}O_4S_6P_8Cl_8]$ -
	$[CF_{3}SO_{3}]_{2},$	[CF ₃ SO ₃] ₂ , 2 (CH ₂ Cl ₂),
	6 (CH ₂ Cl ₂)	4 (CH ₃ OH)
molecular weight	2574.8	2288
space group	$P\overline{1}$	$P\overline{1}$
crystal system	triclinic	triclinic
a, Å	13.235(2)	13.290(2)
b, Å	13.738(2)	14.060(2)
<i>c</i> , Å	17.145(2)	17.048(2)
α, deg	84.18(2)	83.13(1)
β , deg	69.82(1)	68.44(1)
γ , deg	70.04(1)	73.21(1)
V, Å ³	2750(2)	2798(2)
Ζ	1	1
$D_{ m calcd}, { m g}~{ m cm}^{-3}$	1.56	1.40
μ , cm ⁻¹	8.24	6.11
T (K)	130	293
crystal size, mm	$0.50 \times 0.10 \times 0.05$	$0.60 \times 0.35 \times 0.20$

 $(\delta = 20.9 \text{ (Ph}_2\text{P=N)}, \text{ and } 51.9 \text{ ppm (P=S)}, {}^{2}J_{\text{PP}} = 35 \text{ Hz}) \text{ on behalf of two new doublets for the [P-N-P-S-Me]^+ linkages of$ **5-[G_1]** $(<math>\delta = 22.1 \text{ (P-S-Me)}$, and 27.6 ppm (Ph}_2P-N), {}^{2}J_{\text{PP}} = 17 \text{ Hz}), whereas the signal corresponding to the P(S)Cl₂ groups remains identical ($\delta = 62.1 \text{ for } 1\text{-[G_1]}, 62.5 \text{ ppm for } 5\text{-[G_1]}$). This result is now unambiguously confirmed by the X-ray diffraction determination of the structure of 5-[G_1] (Table 1). The CAMERON drawing is represented in Figure 1, together with selected bond lengths and bond angles. The four O-C₆H₄-CH=N-N(Me)P(S) arms are flat, a tendency which was already observed for other dendrimers incorporating this linkage.^{2n,13} One methyl group is linked to the sulfur atom of each P=N-P=S group, whereas the four P(S)Cl₂ end groups remain unchanged. The P(1)-N(2) (1.52(1) Å), N(2)-P(2) (1.60(1) Å), P(1)-S(1) (2.035(4) Å), and S(1)-C(4) (1.86(2) Å) bond

⁽¹³⁾ Lartigue, M.-L.; Launay, N.; Donnadieu, B.; Caminade, A.-M.; Majoral, J.-P. Bull. Soc. Chim. Fr. **1997**, 134, 981.

Figure 1. CAMERON drawing of dendrimer **5-**[**G**₁]. Selected bond lengths (Å): P(1)-S(1) = 2.035(4); P(1)-N(2) = 1.52(1); P(2)-N(2) = 1.60(1); S(1)-C(4) = 1.86(2); P(3)-S(3) = 1.906(5); P(3)-N(5) = 1.65(1); P(4)-S(2) = 1.882(6); P(4)-N(7) = 1.62(1). Selected bond angles (deg): P(1)-N(2)-P(2) = 152.1(7); S(1)-P(1)-N(2) = 110.9(4); P(1)-S(1)-C(4) = 102.2(5).

Figure 2. CAMERON drawing of dendrimer 8-[G₁]. Selected bond lengths (Å): P(1)-S(1) = 2.03 (3); P(1)-N(2) = 1.53(6); P(2)-N(2) = 1.59(6); S(1)-C(4) = 1.85(9); C(4)-C(5) = 1.45(9); C(5)-C(6) = 1.40(9); P(3)-S(3) = 1.90(4); P(3)-N(5) = 1.66(7); P(4)-S(2) = 1.88(5); P(4)-N(7) = 1.63(7). Selected bond angles (deg): P(1)-N(2)-P(2) = 148(5); S(1)-P(1)-N(2) = 111(3); P(1)-S(1)-C(4) = 101(3); S(1)-C(4)-C(5) = 102(4).

distances reflect the partial delocalization of the positive charge along this linkage. Indeed, all these bond lengths lie between the distances commonly found for single and double bonds between these elements: for instance, the distances for the N-P(S)Cl₂ fragments of **5-[G₁]** are 1.62–1.65 Å for the P–N bonds and 1.882–1.906 Å for the P=S bonds. The bond lengths of the [P=N=P]⁺ fragments of **5-[G₁]** are comparable to the values generally determined for the well-known bis(triphenylphosphine)imminium cations [Ph₃P=N=PPh₃]⁺ which has found extensive use for the crystallization of anionic species.¹⁴

The dialkylation of **1-[G₁]** has been extended to functionalized triflates such as allyltriflate and propargyltriflate.¹⁵ In both cases, the alkylation reaction occurs on the sulfur of the P=N-P=S bonds to afford **6-[G₁]** and **7-[G₁]**, respectively.¹⁰ Two new doublets appear on the ³¹P NMR spectra at $\delta = 20.4$ (P-S-allyl) and 26.9 ppm (Ph₂P-N), ²J_{PP} = 17 Hz, for **6-[G₁]**, or at $\delta = 18.8$ (P-S-propargyl) and 27.5 ppm (Ph₂P-N), ²J_{PP} =

13 Hz, for **7-[G₁]**, beside signals corresponding to the other P=S groups of the molecule, which remain unchanged. The structure of compound **6-[G₁]** has been determined by X-ray diffraction.¹⁰ The bond lengths and angles corresponding to the $[P=N=P-S]^+$ linkages are very close to those determined for **5-[G₁]**, as could be expected (Scheme 3).

A slow evolution of compound $6-[G_1]$ (unpurified) is observed when left in solution for 3 months. The new compound 8-[G₁] exhibits in ³¹P NMR two new doublets ($\delta = 19.0$ (P-S-C) and 27.3 ppm (Ph₂P-N), ${}^{2}J_{PP} = 14$ Hz) very slightly different from those detected for 6-[G1]. Changes are mainly detected in ¹H and ¹³C NMR, exclusively on signals corresponding to the S-allyl linkages. For instance, the presence of a highly deshielded signal on the ¹³C NMR spectrum of 8-[G₁] (δ = 203 ppm), characteristic of HC=C=CH₂ linkages, corresponds to the well-known transformation $CH_2-C\equiv CH \rightarrow$ $HC=C=CH_2$ in the presence of a base. The X-ray diffraction study of compound $8-[G_1]$ (Figure 2, Table 1) confirms the structure, even if the determination of the bond lengths and angles for the S-HC=C=CH₂ linkages is not very accurate, due to the fact that the allenic chains are highly disordered. The values determined for the $[P=N=P-S]^+$ linkages compare well with those found for $5-[G_1]$ and $7-[G_1]$.

⁽¹⁴⁾ See for instance: (a) Wei, C. Y.; Marks, M. W.; Ban, R.; Kirtley,
S. W.; Bisson, D. E., Henderson, M. E., Koetzle, T. F. *Inorg. Chem.* 1982,
21, 2556. (b) Blake, A. J.; Freeman, G.; Johnson, B. F. G.; McDougall, G.
S. Acta Crystallogr. 1994, C50, 1301.

⁽¹⁵⁾ Beard, C. D.; Baum, K.; Grakauskas, V. J. Org. Chem. 1973, 38, 3673.

The alkylation reactions have been extended to higher generations of the dendrimer 1-[Gn], particularly to the fourth generation 1-[G₄]. This dendrimer possesses 2 P=N-P=S groups at the core and 16 P=N-P=S groups at the third generation. The reaction with 18 equiv of allyl triflate gives dendrimer 6-[G4], whereas the reaction with 18 equiv of propargyltriflate gives dendrimer $7-[G_4]$ (Scheme 3). In both cases, the reactions are monitored by ³¹P NMR which indicates, besides the signals of the N-N-P=S groups, the presence of two sets of two doublets in an approximative ratio 1/8: $\delta =$ 20.5 (P-S-allyl) and 26.7 ppm (Ph₂P-N), ${}^{2}J_{PP} = 15$ Hz at the level of the core, 19.7 (Ph₂P-N) and 21.3 ppm (P-Sallyl), ${}^{2}J_{PP} = 11$ Hz at the level of the third generation for **6-[G₄]**; $\delta = 18.8$ (P–S–propargyl) and 27.4 ppm (Ph₂P–N), ${}^{2}J_{PP} = 12$ Hz at the level of the core, 19.6 (Ph₂P-N) and 20.5 ppm (P–S–propargyl), ${}^{2}J_{PP} = 8$ Hz at the level of the third generation for 7-[G₄]. ¹H and ¹³C NMR spectra of both compounds confirm their structure.

The methylation reaction with methyltriflate has been used also with dendrimers possessing O-Ph groups on the surface (Scheme 4). Dendrimers 9-[G₁] (2 P=N=P-S-Me groups), 9-[G₂] (2 P=N=P-S-Me groups), and 9-[G₄] (18 P=N=P-S-Me groups) are obtained from the dendrimers with the diphosphine core, 2-[G₁], 2-[G₂], and 2-[G₄], respectively. Dendrimers 10-[G₂] (6 P=N=P-S-Me groups), and 10-[G₃] (6 P=N=P-S-Me groups) are obtained from the dendrimers with the cyclotriphosphazene core, 4-[G₂], and 4-[G₃], respectively. Methylation of all these compounds induces the same type of shielding of the signal corresponding to the P=N-P=S groups and the slight deshielding of the signal corresponding to the Ph2P=N-P=S groups already observed by ³¹P NMR for all the alkylated dendrimers described above (Figure 3). In all cases, the attribution of the signals to each phosphorus is done by running a ³¹P NMR experiment with proton couplings: the PPh₂ signal gives a broad singlet, whereas each line of the doublet corresponding to the P-S-Me groups is splitted into four lines.

Desulfurization Reactions. It has been shown already that the alkylation of P=S bonds induces a weakening of the strength of this bond which can lead to its cleavage, for instance in the presence of tris(dimethylamino)phosphine, to give tricoordinated phosphorus atoms.¹⁶ We have tried to apply this reaction to various dendrimers obtained after alkylation with methyltriflate.

To demonstrate the feasability of this reaction with P=N=P-S-Me linkages, in first experiments, we have carried out this reaction with the first generation $9-[G_1]$ (Scheme 5). Reaction with $P(NMe_2)_3$ induces the appearance of one singlet on the ³¹P NMR spectrum at $\delta = 68$ ppm, corresponding to [Me–S– $P(NMe_2)_3]^+$, and the disappearance of the signals corresponding to the [P=N=P-S-Me]⁺ linkages, on behalf of two new doublets at $\delta = 14.5$ (Ph₂P=N) and 144.2 ppm (N-P:) (²J_{PP} = 40.2 Hz). This last signal is characteristic of tricoordinated phosphorus atoms, and shows that the desulfurization has occurred to yield the dendrimer $11-[G_1]$ which possess two [P=N-P:] linkages. 11- $[G_1]$ is soluble in toluene, whereas [Me- $S-P(NMe_2)_3$ ⁺ is not, thus 11-[G₁] is isolated by extraction with toluene, and used without further purification. Indeed, this compound is extremely sensitive to oxidation, and we have been unable to obtain reliable ¹H and ¹³C NMR spectra. However, the ³¹P NMR spectrum of compound **11-** $[G_1]$ is unambiguous.

The same desulfurization procedure applied to dendrimers **9-[G₂], 9-[G₄]** (diphosphine core), and **10-[G₂], 10-[G₃]** (cyclotriphosphazene core) yields compounds **11-[G₂], 11-[G₄], 12-[G₂]**, and **12-[G₃]**, respectively (Scheme 5, Figure 3). Among them, one can notice the obtention of dendrimer **11-[G₄]**, which possess two [P=N-P:] linkages at the level of the core (characterized on the ³¹P NMR spectrum by the appearance of two doublets at $\delta = 14.2$ (Ph₂P=N) and 144.1 ppm (N-P:), ²J_{PP} = 41 Hz), and 16 [P=N-P:] linkages at the level of the third generation (characterized on the ³¹P NMR spectrum by the appearance of two doublets at $\delta = 8.7$ (Ph₂P=N) and 144.3 ppm (N-P:), ²J_{PP} = 40 Hz).

Reactions of [P=N-P:] Internal Linkages with Alkyl Halides. The presence of tricoordinated phosphorus atoms in the internal layers of dendrimers 11-[Gn] and 12-[Gn] should confer to these compounds a versatile reactivity. We have focused our attention on the obtention of phosphonium salts (reactivity with alkyl halides) and P=N bonds (reactivity with azides). Both methods can lead to the grafting of new types of internal functions.

In first attempts, we tried to react alkyl bromides with dendrimer $11-[G_2]$: no reaction occurs, except oxidation. On

^{(16) (}a) Omelanczuk, J.; Mikolajczyk, M. *Tetrahedron Lett.* 1984, 25, 2493.
(b) Omelanczuk, J. *J. Chem. Soc., Chem. Commun.* 1992, 1718.
(c) Prévôté, D.; Galliot, C.; Caminade, A. M.; Majoral, J. P. *Heteroatom Chem.* 1995, 6, 313.

$$\begin{array}{l} 9 \cdot [G_{1}] & \frac{2 P(NMe_{2})_{3}}{-2 [Me-S-P(NMe_{2})_{3}] [CF_{3}SO_{3}]} & \left((CH_{2})_{3} \cdot \stackrel{P}{P=N} \cdot \stackrel{P}{P} \left(O \cdot \stackrel{H}{\longrightarrow} \cdot \stackrel{Me}{C} \cdot N - \stackrel{P}{P} \left(O \cdot \stackrel{H}{\longrightarrow} \cdot \stackrel{Me}{D} \right)_{2} \right)_{2} \right)_{2} \\ 9 \cdot [G_{2}] & \frac{2 P(NMe_{2})_{3}}{-P} + \left((CH_{2})_{3} \cdot \stackrel{P}{P=N} \cdot \stackrel{P}{P} \left(O \cdot \stackrel{H}{\longrightarrow} \cdot \stackrel{Me}{C} \cdot N - \stackrel{P}{P} \left(O \cdot \stackrel{H}{\longrightarrow} \cdot \stackrel{Me}{C} \cdot N - \stackrel{P}{P} \left(O \cdot \stackrel{H}{\longrightarrow} \cdot \stackrel{Me}{C} \cdot N - \stackrel{P}{P} - \left(O \cdot \stackrel{H}{\longrightarrow} \cdot \stackrel{Me}{C} \cdot N - \stackrel{P}{P} - \left(O \cdot \stackrel{H}{\longrightarrow} \cdot \stackrel{Me}{C} \cdot N - \stackrel{P}{P} - \left(O \cdot \stackrel{H}{\longrightarrow} \cdot \stackrel{Me}{C} \cdot N - \stackrel{P}{P} - \left(O \cdot \stackrel{H}{\longrightarrow} \cdot \stackrel{Me}{C} \cdot N - \stackrel{P}{P} - \left(O \cdot \stackrel{H}{\longrightarrow} \cdot \stackrel{Me}{C} \cdot N - \stackrel{P}{P} - \left(O \cdot \stackrel{H}{\longrightarrow} \cdot \stackrel{Me}{C} \cdot N - \stackrel{P}{P} - \left(O \cdot \stackrel{H}{\longrightarrow} \cdot \stackrel{Me}{C} \cdot N - \stackrel{P}{P} - \left(O \cdot \stackrel{H}{\longrightarrow} \cdot \stackrel{Me}{C} \cdot N - \stackrel{P}{P} - \left(O \cdot \stackrel{H}{\longrightarrow} \cdot \stackrel{Me}{C} \cdot N - \stackrel{P}{P} - \left(O \cdot \stackrel{H}{\longrightarrow} \cdot \stackrel{Me}{C} \cdot N - \stackrel{P}{P} - \left(O \cdot \stackrel{H}{\longrightarrow} \cdot \stackrel{Me}{C} \cdot N - \stackrel{P}{P} - \left(O \cdot \stackrel{H}{\longrightarrow} \cdot \stackrel{Me}{C} \cdot N - \stackrel{P}{P} - \left(O \cdot \stackrel{H}{\longrightarrow} \cdot \stackrel{Me}{C} \cdot N - \stackrel{P}{P} - \left(O \cdot \stackrel{H}{\longrightarrow} \cdot \stackrel{Me}{C} \cdot N - \stackrel{P}{P} - \left(O \cdot \stackrel{H}{\longrightarrow} \cdot \stackrel{Me}{C} \cdot N - \stackrel{P}{P} - \left(O \cdot \stackrel{H}{\longrightarrow} \cdot \stackrel{Me}{C} \cdot N - \stackrel{P}{P} - \left(O \cdot \stackrel{H}{\longrightarrow} \cdot \stackrel{Me}{C} \cdot N - \stackrel{P}{P} - \stackrel{Me}{P} - \left(O \cdot \stackrel{H}{\longrightarrow} \cdot \stackrel{Me}{C} \cdot N - \stackrel{P}{P} - \left(O \cdot \stackrel{H}{\longrightarrow} \cdot \stackrel{Me}{C} - \left(O \cdot \stackrel{H}{\longrightarrow} \cdot \stackrel{Me}{P} - \left(O \cdot \stackrel{H}{\longrightarrow} \cdot \stackrel{H}{P} - \stackrel{Me}{P} - \left(O \cdot \stackrel{H}{\longrightarrow} \cdot \stackrel{H}{P} - \stackrel{Me}{P} - \left(O \cdot \stackrel{H}{\longrightarrow} \cdot \stackrel{H}{P} - \stackrel{Me}{P} - \left(O \cdot \stackrel{H}{\longrightarrow} \cdot \stackrel{H}{P} - \stackrel{Me}{P} - \left(O \cdot \stackrel{H}{\longrightarrow} \cdot \stackrel{H}{P} - \stackrel{H}{P} - \left(O \cdot \stackrel{H}{\longrightarrow} \cdot \stackrel{H}{P}$$

the other hand, alkyl iodides react easily at room temperature to yield the corresponding phosphonium salts. The reaction with methyl iodide leads to dendrimer $13-[G_2]$ (Scheme 6), which is characterized by the appearance of two doublets corresponding to the $[Ph_2P=N=P-Me]^+$ linkages at $\delta = 26.5$ and 26.9 ppm, ${}^{2}J_{PP} = 23$ Hz, on the ${}^{31}P$ NMR spectrum. Analogous experiments have been carried out with dendrimer 12-[G2], leading to the methylated dendrimer $15-[G_2]$ which possess 6 $[Ph_2P=N=P-Me]^+$ internal linkages.

Allylic functions are introduced in the same way, reacting allyl iodide with dendrimers 11-[G2] and 12-[G2], to yield dendrimers 14-[G₂] and 16-[G₂], respectively. The allylation induces the appearance of two doublets on the ³¹P

NMR spectrum of both compounds, characteristic of the $[Ph_2P=N=P-C]^+$ linkages (Figure 3). To ascertain the attribution of signals in ¹H and ¹³C NMR spectra, the "small" compound 19, possessing all the functional groups of dendrimers 14-[Gn] and 15-[Gn] was also synthesized as shown in Scheme 7.

Reactions of [P=N-P:] Internal Linkages with Azides. The Staudinger reaction of functionalized azides with the aminophosphite groups of dendrimers 11-[Gn] and 12-[Gn] should be the best method to introduce new functions at some specific layers within the dendrimer. Indeed, these reactions are generally quantitative and proceed with evolution of nitrogen as sole byproduct.

$$11-[G_{2}] + 2 RI \longrightarrow \left((CH_{2})_{3} - \stackrel{Ph}{=} N = \stackrel{Ph}{=} P + \left(O - \stackrel{H}{\longrightarrow} - \stackrel{Me}{C} = N - N - \stackrel{P}{=} \left(O - \stackrel{H}{\longrightarrow} - \stackrel{Me}{C} = N - \stackrel{Ph}{=} - \stackrel{H}{\longrightarrow} - \stackrel{Me}{C} = N - \stackrel{Ph}{=} - \stackrel{H}{\longrightarrow} - \stackrel{Me}{C} = N - \stackrel{Ph}{=} - \stackrel{H}{\longrightarrow} - \stackrel{H}{C} = O - \stackrel{H}{\longrightarrow} - \stackrel{H}{\longrightarrow} - \stackrel{H}{C} = O - \stackrel{H}{\longrightarrow} - \stackrel{H}{\longrightarrow} - \stackrel{H}{C} = O - \stackrel{H}{\longrightarrow} - \stackrel{H}$$

Scheme 7

Scheme 8

The reaction was first tested with the small compound **18** and 4-azidophenylisothiocyanate, leading to the quantitative formation of compound **20** (Scheme 7). The reaction was then applied to the first generation of the dendrimer **11-**[**G**₁]. It proceeds rapidly at room temperature to yield compound **21**-[**G**₁] (Scheme 8). The formation of the Ph₂P=N-P=N-Ar linkages induces the appearance of two doublets on the ³¹P NMR spectrum at $\delta = -8.3$ (P=N-Ar) and 20.6 ppm (Ph₂P=N), ²*J*_{PP} = 22 Hz. The bright orange color of this dendrimer indicates a large delocalization of electrons along the P=N-P=N-C₆H₄-N=C=S linkages. The same experiment carried out with 18 equiv of 4-azidophenylisothiocyanate and dendrimer **11-**[**G**₄] affords dendrimer **21-**[**G**₄] which possesses 2 isocyanate linkages at the core and 16 at the third generation. Both P=N-P=S types of linkages induce the appearance of two different sets of two doublets on the ³¹P NMR spectrum: $\delta = -8.6$ (P=N-Ar) and 17.5 ppm (Ph₂P=N) (²J_{PP} = 30.5 Hz) for the core, and $\delta = -10.4$ (P=N-Ar) and 18.2 ppm (Ph₂P=N) (²J_{PP} = 31.1 Hz) for the third generation.

Dendrimers 12- $[G_2]$ and 12- $[G_3]$ obtained from the cyclotriphosphazene core behave alike with 4-azidophenylisothiocyanate to give compounds 22- $[G_2]$ and 22- $[G_3]$, respectively (Scheme 8).

Figure 3 demonstrates how useful is ³¹P NMR to monitor rigorously the P=N-P=S \rightarrow P=N=P-S-Me \rightarrow P=N-P: \rightarrow P=N=P-allyl or P=N-P=N-R transformations (4-[G₂] \rightarrow

Figure 4. Numbering schemes used for ³¹P, ¹H, and ¹³C NMR.

10-[**G**₂] → **12-**[**G**₂] → **16-**[**G**₂] or **22-**[**G**₂]). In all cases, the signals corresponding to the core P₀ and to the phosphorus of the surface P₂ remain unchanged, whereas the doublet corresponding to P'₁ and P₁ are shielded or deshielded, depending on the reagent used (see Figure 4 for the numbering used).

Several other types of azides such as 1-amino-3-azidopropane¹⁷ and $N_3P(S)[OC_6H_4CHO]_2$ react with the aminophosphite internal groups. These reactions, carried out with dendrimer **12**-**[G_3]** induce the grafting of 6 primary amine (**23-[G_3]**) or 12 aldehyde (**24-[G_3]**) groups in the internal layer of the third generation dendrimer **12-[G_3]** (Scheme 8).

Condensation Reactions of Aldehyde Internal Groups. The presence of aldehyde internal groups should confer to dendrimer **24-**[G₃] a versatile reactivity, as we have already shown for dendrimers bearing aldehyde groups on the surface.² The condensation reaction of primary amines (Schiff reaction) occurs readily at room temperature with alkylamines such as 1-amino-3-azidopropane (Scheme 9). This reaction is monitored by ¹H NMR which indicates the total disappearance of the signal due to the CHO groups ($\delta = 9.73$ ppm) on behalf of a signal at $\delta = 8.10$ ppm corresponding to the CH=N groups. The condensation is also confirmed by ¹³C NMR and IR spectra. This reaction leads to the quantitative grafting of 12 azides in the internal layers of dendrimer **25-**[G₃].

Even a large molecule such as 4'-aminobenzo-15-crown-5 can be incorporated within the dendrimer by condensation, leading to compound 26-[G3] (Scheme 9, Figure 5). This

reaction needs one week in refluxing THF to go to completion. The steric hindrance presumably plays a role in the disminishing of the reaction rate when compared to the condensation with 1-amino-3-azidopropane, but the main factor is certainly the fact that the crown ether is connected to an arylamine. Indeed, arylamines are known to be much less reactive than alkylamines; this phenomenon was already observed for the reactivity on the surface of low generation (nonhindered) dendrimers.^{2e}

Conclusion

We have shown that the presence of P=N-P=S groups in the internal layers of two series of dendrimers allows the development of a versatile reactivity, due to the fact that the sulfur atom of this linkage can be considered as a protecting group, easy to remove. Indeed, the deprotection of this linkage allows the regiospecific grafting of several types of functional groups such as aminophosphites, allyl or propargyl groups, isothiocyanates, primary amines, azides, or crown-ethers. Furthermore, the use of alkyl triflates or alkyl iodides permits the introduction of charges in different layers, for instance at the core and at the third generation. All these functional groups and/or charges are located at precise sites within the dendrimeric structure, after the synthesis of the dendrimer.

This paper demonstrates that the presence of phosphorus atoms in the skeleton of the dendrimer should make possible for the first time the incorporation in the internal layers of any type of function needed for particular purposes, such as for example molecular recognition or catalysis. Work is in progress

Figure 5. Dendrimer 26-[G₃] possessing 12 crown-ether cavities in the internal layers.

to study the complexation ability of crown-ethers toward alkaline metals and of P=N-P=S and P=N-P=S groups toward transition metals.

Experimental Section

General. All manipulations were carried out with standard high vacuum and dry argon atmosphere techniques. ¹H, ¹³C, and ³¹P NMR spectra were recorded on a Bruker AC200 or AMX 400 spectrometers. ³¹P NMR chemical shifts were reported in ppm relative to 85% H₃PO₄. The numbering used for NMR is depicted in Figure 4. Compounds N₃P(S)(OC₆H₄CHO)₂,¹⁸ Ph₂PCH₂OH,^{2g} CF₃SO₃CH₂-CH=CH₂,¹⁴ CF₃-SO₃CH₂-C=CH,¹⁴ and N₃CH₂CH₂CH₂NH₂,¹⁷ were synthesized according to published procedures.

Synthesis of Dendrimers: Characterization of Compounds. **1-[G₄]**: 94% yield. ³¹P{¹H} NMR (CDCl₃): δ 13.5 (d, ²J_{P'3P3} = 31.7 Hz, P'₃), 20.4 (d, ${}^{2}J_{P'_{0}P_{0}} = 34.0$ Hz, P₀'), 52.5 (br d, ${}^{2}J_{P_{3}P'_{3}} = {}^{2}J_{P_{0}P'_{0}} =$ 31 Hz, P0, P3), 62.5 (s, P1), 63.0 (s, P2), 63.2 (s, P4) ppm. ¹H NMR (CDCl₃): δ 1.40 (br s, 8 H, (CH₂)₃, (CH₂)₂), 2.60 (br s, 4 H, (CH₂)¹), 2.82 (s, 48 H, Me³), 3.37 (d, ${}^{3}J_{HP_{1}} = {}^{3}J_{HP_{2}} = {}^{3}J_{HP_{4}} = 14.0$ Hz, 132 H, $Me^1,\,Me^2,\,Me^4),\,4.71$ (s, 32 H, $CH_2P'_3),\,6.85{-}7.70$ (m, 480 H, $C_6H_4,$ C₆H₅, CH=N) ppm. ¹³C{¹H} NMR (CDCl₃): δ 31.7 (d, ²J_{CP4} = 13 Hz, Me⁴); 32,9 (d, ${}^{2}J_{CP_{1}} = {}^{2}J_{CP_{2}} = 12$ Hz, Me¹, Me²), 39.1 (d, ${}^{3}J_{CP'_{3}} =$ 4 Hz, Me³), 56.5 (d, ${}^{1}J_{CP'_{3}} = 74$ Hz, CH₂P'₃), 121.1 (d, ${}^{1}J_{CP_{2}} = 3$ Hz, $C_{2^{2}}$, 121.9 (d, ${}^{3}J_{CP_{0}} = {}^{3}J_{CP_{1}} = {}^{3}J_{CP_{3}} = 4$ Hz, $C_{0^{2}}$, $C_{1^{2}}$, $C_{3^{2}}$), 126.5 (s, C_2^{3}), 127.8 (dd, ${}^{1}J_{CP'_{3}} = 104$ Hz, ${}^{3}J_{CP_{3}} = 5$ Hz, C_3^{i}), 127.9 (s, C_0^{3}), 128.2 (s, C_1^3 , C_3^3), 128.5 (d, ${}^3J_{CP'_0} = {}^3J_{CP'_3} = 13$ Hz, C_0^m , C_3^m), 130.1 (s, C_3^4), 130.8 (s, C_2^4), 131.7 (s, C_1^4 , C_0^4), 132.0 (d, ${}^2J_{CP'_0} = {}^2J_{CP'_3} =$ 10 Hz, C₀°, C₃°), 132.4 (s, C₃^p), 133.4 (s, CH=NNCH₂P'₃), 138.8 (m, $(CH=N)^1$, 139.7 (m, $(CH=N)^0$), 141.2 (d, ${}^{3}J_{CP_4} = 19$ Hz, $(CH=N)^3$), 149.6 (d, ${}^{2}J_{CP_{2}} = 7$ Hz, $C_{2}{}^{1}$), 151.2 (d, ${}^{2}J_{CP_{1}} = 7$ Hz, $C_{1}{}^{1}$), 152.9 (d, ${}^{2}J_{CP_{0}} = 8$ Hz, $C_{0}{}^{1}$), 153.2 (d, ${}^{2}J_{CP_{3}} = 9$ Hz, $C_{3}{}^{1}$), ((CH₂)³, (CH₂)², (CH₂)¹, and $C_{0}{}^{i}$ not detected). Anal. Calcd for $C_{718}H_{704}N_{138}O_{60}P_{80}S_{62}Cl_{64}$: C, 45.48; H, 3.74; N, 10.19. Found: C, 45.71, H, 3.92; N, 9.99.

2-[G₄]: 94% yield. ³¹P{¹H} NMR (CDCl₃): δ 14.2 (d, ²J_{P'3P3} = 31.6 Hz, P'₃), 20.4 (d, ${}^{2}J_{P'_{0}P_{0}} = 34.5$ Hz, P'₀), 52.1 (br d, ${}^{2}J_{P_{0}P'_{0}} = {}^{2}J_{P_{3}P'_{3}} =$ 31.5 Hz, P₀, P₃), 61.8 (s, P₁), 61.9 (s, P₂), 63.2 (s, P₄) ppm; ¹H NMR (CDCl₃): 1.38 (br s, 8 H, (CH₂)³, (CH₂)²), 2.60 (br s, 4 H, (CH₂)¹), 2.82 (s, 48 H, Me³), 3.37 (d, ${}^{3}J_{HP_{1}} = {}^{3}J_{HP_{2}} = {}^{3}J_{HP_{4}} = 14$ Hz, 132 H, Me¹, Me², Me⁴), 4.71 (s, 32 H, CH₂P'₃), 6.85–7.70 (m, 800 H, C₆H₄, C₆H₅, CH=N) ppm. ¹³C{¹H} NMR (CDCl₃): δ 32.9 (d, ²J_{CP1} = ²J_{CP2} $= {}^{2}J_{CP_{4}}$, 12 Hz, Me¹, Me², Me⁴), 39.1 (d, ${}^{3}J_{CP'_{3}} = 4$ Hz, Me³), 56.6 (d, ${}^{1}J_{CP'_{3}} = 74$ Hz, CH₂P'₃), 121.1 (d, ${}^{1}J_{CP_{2}} = 3$ Hz, C₂²), 121.3 (d, ${}^{3}J_{CP_{4}} =$ 4 Hz, C_4^2), 121.8 (d, ${}^{3}J_{CP_0} = {}^{3}J_{CP_1} = {}^{3}J_{CP_3} = 4$ Hz, C_0^2 , C_1^2 , C_3^2), 125.2 (s, C₄⁴), 126.5 (s, C₂³), 127.8 (dd, ${}^{1}J_{CP'_{3}} = 103$ Hz, ${}^{3}J_{CP_{3}} = 5$ Hz, C₃ⁱ), 127.9 (s, C_0^3), 128.1 (br s, C_1^3 , C_3^3), 128.5 (br d, ${}^3J_{CP'_0} = {}^3J_{CP'_3} = 13$ Hz, C₀^m, C₃^m), 129.4 (s, C₄³), 130.5 (s, C₃⁴), 130.8 (s, C₂⁴), 131.7 (s, C_1^4 , C_0^4), 132.1 (d, ${}^2J_{CP'_0} = {}^2J_{CP'_3} = 10$ Hz, C_0° , C_3°), 132.4 (s, C_0^{p} , C_{3}^{p}), 133.4 (s, CH=NNCH₂P'₃), 138.4 (d, ${}^{3}J_{CP_{4}} = 19$ Hz, (CH=N)₃), 138.9 (br d, (CH=N)₁), 139.7 (br d, (CH=N)₀), 149.6 (d, ${}^{2}J_{CP_{2}} = 7$ Hz, C_2^{1}), 150.4 (d, ${}^{2}J_{CP_4} = 7$ Hz, C_4^{1}), 151.2 (d, ${}^{2}J_{CP_1} = 7$ Hz, C_1^{1}), 152.9 (d, ${}^{2}J_{CP_{0}} = 8$ Hz, $C_{0}{}^{1}$), 153.1 (d, ${}^{2}J_{CP_{3}} = 9$ Hz, $C_{3}{}^{1}$) ppm, ((CH₂)³, $(CH_2)^2$, $(CH_2)^1$, and $C_0{}^i$ not detected). Anal. Calcd for $C_{1102}H_{1024}N_{138}O_{124}P_{80}S_{62}$: C, 58.43; H, 4.56; N, 8.53. Found: C, 58.70; H, 4.68; N, 8.45.

3-[**G**₂]: 92% yield. ³¹P{¹H} NMR (CDCl₃): δ 8.1 (s, P₀), 13.4 (d, ²J_{P'1P1} = 31 Hz, P'₁), 52.5 (d, ²J_{P1P'1} = 31 Hz, P₁), 63.2 (s, P₂). ¹H NMR (CDCl₃): δ 2.82 (s, 18 H, Me¹), 3.40 (d, ³J_{HP2} = 15.6 Hz, 36 H, Me¹), 4.74 (br s, 12 H, CH₂), 6.80–7.80 (m, 150 H, C₆H₅, C₆H₄, HC=N); ¹³C{¹H} NMR (CDCl₃): δ 31.7 (d, ²J_{CP2} = 13 Hz, Me²), 39.1 (d, ³J_{CP1} = 2 Hz, Me¹), 56.6 (d, ¹J_{CP1} = 73 Hz, CH₂), 120.5 (s, C₀²), 121.9 (d, ³J_{CP1} = 5 Hz, C₁²), 126.6 (s, C₀³), 128.0 (dd, ¹J_{CP1} = 115 Hz, ³J_{CP1} =

⁽¹⁸⁾ Mitjaville, J.; Caminade, A.-M.; Mathieu, R.; Majoral, J.-P. J. Am. Chem. Soc. 1994, 116, 5007.

5 Hz, C_1^{i}), 128.3 (s, C_1^{3}), 128.5 (d, ${}^{3}J_{CP'_1} = 13$ Hz, C_1^{m}), 130.1 (s, C_1^{4}), 130.9 (s, (HC=N)₀), 132.0 (d, ${}^{2}J_{CP'_1} = 10$ Hz, C_1°), 132.5 (s, C_1^{p}), 133.2 (s, C_0^{4}), 140.2 (d, ${}^{3}J_{CP_2} = 19$ Hz, (HC=N)₁), 149.6 (d, ${}^{2}J_{CP_0} = 7$ Hz, C_0^{-1}), 153.2 (d, ${}^{2}J_{CP_1} = 9$ Hz, C_1^{-1}). Anal. Calcd for $C_{222}H_{216}N_{45}O_{18}$ -P₂₇S₁₈Cl₂₄: C, 43.95; H, 3.59; N, 10.39. Found: C, 43.54; H, 3.51; N, 10.26.

4-[G₂]: 94% yield. ³¹P{¹H} NMR (CDCl₃): δ 8.1 (s, P₀), 13.6 (d, ²J_{P'1P1} = 31 Hz, P'1), 52.6 (d, ²J_{P1P1} = 31 Hz, P1), 62.0 (s, P2). ¹H NMR (CDCl₃): δ 2.82 (s, 18 H, Me¹), 3.34 (d, ³J_{HP2} = 10.8 Hz, 36 H, Me²), 4.77 (br s, 12 H, CH₂), 6.80–7.85 (m, 270 H, C₆H₅, C₆H₄, HC=N). ¹³C{¹H} NMR (CDCl₃): δ 32.8 (d, ²J_{CP2} = 14 Hz, Me²), 39.0 (s, Me¹), 56.7 (d, ¹J_{CP1} = 73 Hz, CH₂), 120.5 (s, C₀²), 121.3 (d, ³J_{CP2} = 4 Hz, C₂²), 121.8 (d, ³J_{CP1} = 4 Hz, C₁²), 125.2 (s, C₂⁴), 126.5 (s, C₀³), 127.8 (dd, ¹J_{CP1} = 106 Hz, ³J_{CP1} = 5 Hz, C₁¹), 127.9 (s, C₁³), 128.5 (d, ³J_{CP1} = 13 Hz, C₁^m), 129.6 (s, C₂³), 130.5 (s, C₁⁴), 130.7 (s, (HC=N)₀), 132.1 (d, ²J_{CP1} = 10 Hz, C₁^o), 132.4 (s, C₁^P), 133.1 (s, C₀⁴), 138.6 (d, ³J_{CP2} = 14 Hz, (HC=N)₁), 149.6 (d, ²J_{CP0} = 5 Hz, C₁⁻¹) ppm. Anal. Calcd for C₃₆₆H₃₃₆N₄₅O₄₂P₂₇S₁₈: C, 59.00; H, 4.55; N, 8.46. Found: C, 59.45; H, 4.51; N, 8.36.

4-[**G**₃]: 94% yield. ³¹P{¹H} NMR (CDCl₃): δ 8.1 (br s, P₀), 13.5 (d, ²*J*_{P'1P1} = 31 Hz, P'1), 52.6 (d, ²*J*_{P1P1} = 31 Hz, P1), 62.7 (s, P2, P3). ¹H NMR (CDCl₃): δ 2.77 (s, 18 H, Me¹), 3.27 (m, 108 H, Me², Me³), 4.72 (br s, 12 H, CH₂), 6.75–7.70 (m, 510 H, C₆H₅, C₆H₄, HC=N). ¹³C{¹H} NMR (CDCl₃): δ 32.9 (br d, ²*J*_{CP2} = ²*J*_{CP3} = 13 Hz, Me², Me³), 39.0 (s, Me¹), 56.8 (br d, ¹*J*_{CP1} = 73 Hz, CH₂), 120.5 (s, C₀²), 121.2 (d, ³*J*_{CP3} = 4 Hz, C₃²), 121.7 (br s, C₁², C₂²), 125.2 (s, C₃⁴), 126.5 (s, C₀³), 127.7 (dd, ¹*J*_{CP1} = 109 Hz, ³*J*_{CP1} = 6 Hz, C₁¹), 127.9 (s, C₁³), 128.1 (s, C₂³), 128.4 (d, ³*J*_{CP1} = 10 Hz, C₁^o), 132.1 (s, C₂⁴), 132.4 (s, C₁^p), 133.2 (s, C₀⁴), 138.4 (d, ³*J*_{CP3} = 13 Hz, (HC=N)₂), 139.4 (d, ²*J*_{CP2} = 13 Hz, (HC=N)₁), 149.6 (br s, C₀¹), 150.4 (d, ²*J*_{CP3} = 7 Hz, C₃¹), 151.1 (d, ²*J*_{CP2} = 7 Hz, C₂¹), 152.7 (d, ²*J*_{CP1} = 9 Hz, C₁¹). Anal. Calcd for C₇₀₂H₆₄₈N₉₃₀₉₀P₅₁S₄₂: C, 57.15; H, 4.43; N, 8.83. Found: C, 56.98; H, 4.40; N, 8.74.

Reactivity of Dendrimers. Typical experiments were carried out with 0.2 g of dendrimer.

General Procedure for the Reaction of P=N-P=S Linkages with Alkyl Triflates: Synthesis of Dendrimers 5-[G₁], 6-[G₁], 6-[G₄], 7-[G₁], 7-[G₄], 9-[G₁], 9-[G₂], 9-[G₄], 10-[G₂], 10-[G₃]. To a solution of dendrimer in dichloromethane was added neat alkyl triflate (alkyl = methyl, allyl, propargyl) in 5% excess with respect to the number of P=N-P=S linkages, at room temperature. The solution was stirred for 1 h, then evaporated to dryness to afford the cationic dendrimers with P-N-P-S-Me linkages as white powders.

General Procedure for the Desulfurization: Synthesis of Dendrimers 11-[G₁], 11-[G₂], 11-[G₄], 12-[G₂], 12-[G₃], and Compound 18. To a solution of the dendrimer with P-N-P-S-Me linkages in dichloromethane was added neat $P(NMe_2)_3$ (20% excess with respect to the number of P-N-P-S-Me linkages) at room temperature. The solution was stirred for 2 h, then evaporated to dryness. The residue was extracted with toluene; the solution was filtered, then evaporated to dryness to afford dendrimers 11-[G₁], 11-[G₂], and 12-[G₂]. Dendrimers 11-[G₄] and 12-[G₃] are not enough soluble in toluene to be extracted. They are not isolated at this step, the crude solution is used to react immediately with azides. All the dendrimers with aminophosphite internal groups are extremely sensitive to oxidation.

General Procedure for the Reaction with Alkyl Iodides: Synthesis of Dendrimers 13-[G₂], 14-[G₂], 15-[G₂], 16-[G₂], and Compound 19. To a solution of the dendrimer (with aminophosphite internal functions) or compound 18 in toluene was added a 100% excess of neat alkyl iodide (alkyl = methyl, allyl) at room temperature. The solution was stirred for 2 h and then filtered. The residue was recovered and washed with pentane to afford the cationic dendrimers as white powders.

General Procedure for the Reaction with Azides: Synthesis of Compound 20 and Dendrimers 21-[G₁], 21-[G₄], 22-[G₂], 22-[G₃], 23-[G₃], 24-[G₃]. To a solution of compound 18 or the dendrimer (with aminophosphite internal functions) in toluene was added a solution of the azide (4-azidophenylisothiocyanate, 1-amino-3-azidopropane, or N₃P(S)[OC₆H₄CHO]₂) in toluene (5% excess) at room temperature. The solution was stirred for 1 h and then evaporated to dryness. The residue thus obtained was washed with pentane to afford the dendrimers as yellow to orange powders.

6-[G₄]: 96% yield. ³¹P{¹H} NMR (CD₃COCD₃): δ 19.7 (d, ²J_{P'3P3} = 11 Hz, P'₃), 20.5 (d, ${}^{2}J_{P_{0}P'_{0}}$ = 15 Hz, P₀), 21.3 (d, ${}^{2}J_{P_{3}P'_{3}}$ = 11 Hz, P₃), 26.7 (d, ${}^{2}J_{P'_{0}P_{0}} = 15$ Hz, P'₀), 61.8 (s, P₄), 62.1 (s, P₂), 62.2 (s, P₁) ppm. ¹H NMR (CD₃COCD₃): δ 1.40 (br s, 8 H, (CH₂)², (CH₂)³), 2.93 (br s, 4 H, (CH₂)¹), 3.09 (s, 48 H, Me³), 3.64 (br d, ${}^{3}J_{HP_{1}} = {}^{3}J_{HP_{2}} =$ ${}^{3}J_{\text{HP}_{4}} = 15 \text{ Hz}, 132 \text{ H}, \text{Me}^{1}, \text{Me}^{2}, \text{Me}^{4}), 4.05 \text{ (m, 36 H, SCH}_{2}), 5.01 \text{ (br}$ s, 32 H, CH₂P'₃), 5.32 (br d, ${}^{3}J_{H_{B}H_{A}} = 10$ Hz, 18 H, H_B), 5.46 (br d, ${}^{3}J_{H_{C}H_{A}} = 17 \text{ Hz}, 18 \text{ H}, H_{C}), 6.05 \text{ (m, 18 H, H_{A})}, 7.01-8.16 \text{ (m, 480 H, H_{C})}$ C₆H₅, C₆H₄, CH=N) ppm. ¹³C{¹H} NMR (CD₃COCD₃): 21.3 (br s, $(CH_2)^3$), 26.7 (br d, ${}^1J_{CP'_0} = 70$ Hz, $(CH_2)^1$), 31.9 (d, ${}^2J_{CP_4} = 13$ Hz, Me⁴), 33.1 (br d, ${}^{2}J_{CP_{1}} = {}^{2}J_{CP_{2}} = 11$ Hz, Me¹, Me²), 35.3 (d, ${}^{2}J_{CP_{0}} =$ ${}^{2}J_{CP_{3}} = 4$ Hz, CH₂SP₀, CH₂SP₃), 39.1 (d, ${}^{3}J_{CP'_{3}} = 8$ Hz, Me³), 56.4 (d, ${}^{1}J_{CP'_{3}} = 78$ Hz, CH₂P'₃), 120.4 (s, CH₂=CH-CH₂-S-P₃), 120.6 (s, <u>CH</u>₂=CH-CH₂-S-P₀), 121.3 (br s, C₂²), 121.4 (q, ${}^{1}J_{CF} = 321$ Hz, CF₃), 121.5 (d, ${}^{3}J_{CP_{3}} = 4$ Hz, C₃²), 121.8 (d, ${}^{3}J_{CP_{0}} = 4$ Hz, C₁²), 121.9 (br s, C_0^2), 125.9 (dd, ${}^1J_{CP'_3} = 103$ Hz, ${}^3J_{CP_3} = 4$ Hz, C_3^i), 127.3 (s, C_2^{3}), 129.0 (br s, C_0^{3} , C_1^{3}), 129.5 (s, C_3^{3}), 129.7 (d, ${}^2J_{CP'_0} = {}^2J_{CP'_3} = 14$ Hz, C_0^m , C_3^m), 131.7 (d, ${}^{3}J_{CP'_0} = {}^{3}J_{CP'_3} = 11$ Hz, C_0° , C_3°), 131.8 (br s, CH=), 132.1 (br s, C_0^4 , C_1^4), 133.3 (s, C_3^4), 133.5 (s, C_2^4), 133.9 (s, C₀^p, C₃^p), 134.4 (s, (CH=N)₂), 140.3 (m, (CH=N)₀, (CH=N)₁), 142.4 (d, ${}^{3}J_{CP_{4}} = 19$ Hz, (CH=N)₃), 150.2 (d, ${}^{2}J_{CP_{2}} = 7$ Hz, C₂¹), 150.7 (d, ${}^{2}J_{CP_{3}} = 10$ Hz, $C_{3}{}^{1}$), 151.5 (d, ${}^{2}J_{CP_{0}} = {}^{2}J_{CP_{1}} = 6$ Hz, $C_{0}{}^{1}$, $C_{1}{}^{1}$) ppm, ((CH₂)² and C₀ⁱ not detected). ¹⁹F{¹H} NMR (CD₃COCD₃): δ 2.61 (s, CF₃) ppm. Anal. Calcd for C₇₉₀H₇₉₄N₁₃₈O₈₄P₈₀S₈₀Cl₆₄F₅₄: C, 43.23; H, 3.65; N, 8.82. Found: C, 43.18; H, 3.60; N, 8.74.

7-[G₄]: 93% yield. ³¹P{¹H} NMR (CD₃COCD₃): δ 18.8 (br d, ²J_{P0P'0} = 12 Hz, P₀), 19.6 (d, ${}^{2}J_{P_{3}P_{3}} = 8$ Hz, P₃), 20.5 (d, ${}^{2}J_{P_{3}P_{3}} = 8$ Hz, P'₃), 27.4 (br d, ${}^{2}J_{P_{0}P_{0}} = 12$ Hz, P_{0}), 61.8 (s, P₄), 62.1 (br s, P₁, P₂) ppm. ${}^{1}H$ NMR (CD₃COCD₃): δ 1.41 (m, 8 H, (CH₂)², (CH₂)³), 2.91 (m, 4 H, $(CH_2)^1$), 2.99 (br s, 48 H, Me³), 3.15 (br s, 18 H, \equiv CH), 3.53 (br d, ${}^{3}J_{\text{HP}_{1}} = {}^{3}J_{\text{HP}_{2}} = {}^{3}J_{\text{HP}_{4}} = 14 \text{ Hz}, 132 \text{ H}, \text{ Me}^{1}, \text{ Me}^{2}, \text{ Me}^{4}), 4.15 \text{ (br d,}$ ${}^{3}J_{\text{HP}_{3}} = 20 \text{ Hz}, 36 \text{ H}, \text{CH}_{2}-\text{C} \equiv), 4.92 \text{ (br s, } 32 \text{ H}, \text{CH}_{2}\text{P}'_{3}), 6.87-8.04$ (m, 480 H, C₆H₅, C₆H₄, CH=N) ppm. ¹³C{¹H} NMR (CD₃COCD₃): 21.0 (d, ${}^{2}J_{CP_{0}} = {}^{2}J_{CP_{3}} = 5$ Hz, CH₂SP₀, CH₂SP₃), 26.7 (br d, ${}^{1}J_{CP'_{0}} =$ 68 Hz, $(CH_2)^1$), 32.0 (d, ${}^2J_{CP_4} = 12$ Hz, Me⁴), 33.0 (br d, ${}^2J_{CP_1} = {}^2J_{CP_2}$ = 12 Hz, Me¹, Me²), 39.2 (d, ${}^{3}J_{CP'_{3}} = 9$ Hz, Me³), 56.4 (d, ${}^{1}J_{CP'_{3}} = 79$ Hz, CH₂P'₃), 76.0 (s, \equiv C-CH₂), 77.8 (d, ${}^{4}J_{CP_{0}} = {}^{4}J_{CP_{3}} = 5$ Hz, \equiv CH), 121.4 (q, ${}^{1}J_{CF} = 318$ Hz, CF₃), 121.4 (br s, C₂²), 121.7 (d, ${}^{3}J_{CP_3} = 5$ Hz, C₃²), 121.9 (br s, C₀², C₁²), 125.9 (dd, ${}^{1}J_{CP'_{3}} = 105$ Hz, ${}^{3}J_{CP_{3}} = 4$ Hz, C₃ⁱ), 127.4 (s, C₂³), 128.9 (br s, C₀³, C₁³), 129.5 (s, C₃³), 129.8 (d, ${}^{2}J_{CP'_{0}} = {}^{2}J_{CP'_{3}} = 13$ Hz, $C_{0}{}^{m}$, $C_{3}{}^{m}$), 131.8 (d, ${}^{3}J_{CP'_{0}} = {}^{3}J_{CP'_{3}} = 11$ Hz, C_0°, C_3°), 132.3 (m, C_0^4, C_1^4), 133.4 (br s, C_2^4, C_3^4), 134.0 (s, C_0^p, C_3^p), 134.8 (s, (CH=N)₂), 140.4 (m, (CH=N)₀, (CH=N)₁), 142.4 (d, ${}^{3}J_{CP_{4}}$ = 19 Hz, (CH=N)₃), 150.3 (d, ${}^{2}J_{CP_{2}} = 5$ Hz, $C_{2}{}^{1}$), 150.8 (d, ${}^{2}J_{CP_{3}} = 11$ Hz, C_3^{1}), 151.6 (d, ${}^{2}J_{CP_0} = {}^{2}J_{CP_1} = 7$ Hz, C_0^{1} , C_1^{1}) ppm, ((C_0^{i} , (CH₂)² and (CH₂)³ not detected). ¹⁹F{¹H} NMR (CD₃COCD₃): δ 2.50 (s, CF₃) ppm. Anal. Calcd for C790H758N138O84P80S80Cl64F54: C, 43.39; H, 3.48; N, 8.84. Found: C, 43.29; H, 3.38; N, 8.68.

9-[G₄]: 95% yield. ³¹P{¹H} NMR (CD₃COCD₃): δ 19.7 (d, ²J_{P'3P3} = 11.1 Hz, P'₃), 22.4 (d, ${}^{2}J_{P_{0}P'_{0}}$ = 15.1 Hz, P₀), 23.3 (d, ${}^{2}J_{P_{3}P'_{3}}$ = 11.1 Hz, P₃), 27.6 (d, ${}^{2}J_{P'_{0}P_{0}} = 15.1$ Hz, P'₀), 61.8 (s, P₄), 62.1 (s, P₁), 62.2 (s, P₂). ¹H NMR (CD₃COCD₃): δ 1.41 (br s, 8 H, (CH₂)², (CH₂)³), 2.70 (d, ${}^{3}J_{\text{HP}_{0}} = {}^{3}J_{\text{HP}_{3}} = 18$ Hz, 54 H, Me-S), 2.90 (br s, 4 H, (CH₂)¹), 3.09 (s, 48 H, Me³), 3.65 (br d, ${}^{3}J_{HP_{1}} = {}^{3}J_{HP_{2}} = {}^{3}J_{HP_{4}} = 15$ Hz, 132 H, Me¹, Me², Me⁴), 5.0 (br s, 32 H, CH₂P'₃), 7.00-8.16 (m, 800 H, C₆H₅, C₆H₄, CH=N) ppm. ¹³C{¹H} NMR (CD₃COCD₃): δ 12.7 (d, ²J_{CP₀} = 5 Hz, Me-S-P₀), 12.8 (d, ${}^{2}J_{CP_{3}} = 5$ Hz, Me-S-P₃), 21.3 (br s, (CH₂)³), 26.7 (br d, ${}^{1}J_{CP'_{0}} = 70$ Hz, (CH₂)¹), 33.0 (br d, ${}^{2}J_{CP_{1}} = {}^{2}J_{CP_{2}} = {}^{2}J_{CP_{4}} =$ 11 Hz, Me¹, Me², Me⁴), 39.0 (d, ${}^{3}J_{CP'_{3}} = 8$ Hz, Me³), 56.4 (d, ${}^{1}J_{CP'_{3}} =$ 78 Hz, CH₂P'₃), 121.2 (br s, C₂²), 121.3 (q, ${}^{1}J_{CF} = 321$ Hz, CF₃), 121.4 (d, ${}^{3}J_{CP_{4}} = 4$ Hz, C₄²), 121.6 (d, ${}^{3}J_{CP_{3}} = 4$ Hz, C₃²), 121.8 (d, ${}^{3}J_{CP_{1}} =$ 4 Hz, C_1^2), 121.9 (br s, C_0^2), 125.3 (s, C_4^4), 125.8 (br d, ${}^1J_{CP'_3} = 103$ Hz, C₃ⁱ), 127.5 (s, C₂³), 129.0 (br s, C₀³, C₁³), 129.5 (s, C₃³), 129.6 (s, C_4^{3}), 129.8 (d, ${}^{3}J_{CP'_0} = {}^{3}J_{CP'_3} = 14$ Hz, C_0^{m} , C_3^{m}), 131.6 (d, ${}^{2}J_{CP'_0} =$ ${}^{2}J_{CP'_{3}} = 11$ Hz, $C_{0^{0}}$, $C_{3^{0}}$), 132.4 (br s, $C_{0^{4}}$, $C_{1^{4}}$), 133.3 (s, $C_{3^{4}}$), 133.5 (s, C_2^4), 133.9 (s, C_0^p , C_3^p), 134.6 (s, (CH=N)₂), 139.7 (d, ${}^{3}J_{CP_4} = 19$ Hz, (CH=N)₃), 140.3 (m, (CH=N)₀, (CH=N)₁), 150.2 (d, ${}^{2}J_{CP_{2}} = 7$ Hz, C_2^{1}), 150.8 (d, ${}^{2}J_{CP_3} = 10$ Hz, C_3^{1}), 151.0 (d, ${}^{2}J_{CP_4} = 8$ Hz, C_4^{1})), 151.4 (d, ${}^{2}J_{CP_{0}} = {}^{2}J_{CP_{1}} = 7$ Hz, $C_{0}{}^{1}$, $C_{1}{}^{1}$), ((CH₂)₂ and $C_{0}{}^{i}$ not detected). ¹⁹F{¹H} NMR (CD₃COCD₃): δ 2.60 (s, CF₃) ppm. Anal. Calcd for C₁₁₃₈H₁₀₇₈N₁₃₈O₁₇₈P₈₀S₈₀F₅₄: C, 53.38; H, 4.24; N, 7.55. Found: C, 53.21; H, 4.17; N, 7.48.

10-[G₂]: 98% yield. ³¹P{¹H} NMR (CDCl₃): δ 8.0 (br s, P₀), 19.5 (d, ${}^{2}J_{P'_{1}P_{1}} = 9.3$ Hz, P'_1), 23.5 (d, ${}^{2}J_{P_{1}P'_{1}} = 9.3$ Hz, P_1), 61.2 (s, P_2). ¹H NMR (CDCl₃): δ 2.37 (d, ${}^{3}J_{\rm HP_{1}}$ = 16.2 Hz, 18 H, S-Me), 2.76 (s, 18 H, Me¹), 3.35 (d, ${}^{3}J_{HP_{2}} = 13$ Hz, 36 H, Me²), 4.5 (br s, 12 H, CH₂), 6.80-7.75 (m, 270 H, C₆H₅, C₆H₄, HC=N) ppm. ¹³C{¹H} NMR (CDCl₃): δ 13.0 (d, ${}^{2}J_{CP_{1}} = 4$ Hz, SMe), 32.9 (d, ${}^{2}J_{CP_{2}} = 12$ Hz, Me²), 39.3 (s, Me¹), 57.0 (d, ${}^{1}J_{CP'_{1}} = 72$ Hz, CH₂), 120.4 (s, C₀²), 120.7 (q, ${}^{1}J_{CF} = 320$ Hz, CF₃), 120.7 (br s, C₁²), 121.3 (d, ${}^{3}J_{CP_{2}} = 4$ Hz, C₂²), 124.8 (br d, ${}^{1}J_{CP'_{1}} = 102$ Hz, $C_{1}{}^{i}$), 125.3 (s, $C_{2}{}^{4}$), 127.8 (s, $C_{0}{}^{3}$), 128.9 (s, C_1^3), 129.3 (s, C_2^3), 129.4 (d, ${}^{3}J_{CP'_1} = 13$ Hz, C_1^m), 131.5 (d, ${}^{2}J_{CP'_1}$ = 10 Hz, C_1°), 132.8 (s, C_0^{4}), 133.5 (s, C_1^{4}), 133.9 (s, C_1^{p}), 134.6 (s, (CH=N)₀), 138.5 (d, ${}^{3}J_{CP_{2}} = 14$ Hz, (HC=N)₁), 149.6 (d, ${}^{2}J_{CP_{1}} = 11$ Hz, C_1^{1}), 149.6 (s, C_0^{1}), 150.3 (d, ${}^{2}J_{CP_2} = 7$ Hz, C_2^{1}) ppm. ${}^{19}F{}^{1}H{}$ NMR (CDCl₃): δ -2. 0 (s, CF₃) ppm. Anal. Calcd for $C_{378}H_{354}N_{45}O_{60}P_{27}S_{24}F_{18}$: C, 53.82; H, 4.23; N, 7.47. Found: C, 53.70; H, 4.19; N, 7.37.

10-[G₃]: 97% yield. ³¹P{¹H} NMR (CDCl₃): δ 8.3 (br s, P₀), 19.8 (d, ${}^{2}J_{P_{1}P_{1}} = 8$ Hz, P'_1), 24.0 (d, ${}^{2}J_{P_{1}P_{1}} = 8$ Hz, P_1), 62.3 (s, P_2), 62.8 (s, P₃); ¹H NMR (CDCl₃): δ 2.36 (d, ³*J*_{HP1} = 16.2 Hz, 18 H, S–Me), 2.76 (s, 18 H, Me¹), 3.30 (m, 108 H, Me², Me³), 4.5 (br s, 12 H, CH₂), 6.80-7.75 (m, 510 H, C₆H₅, C₆H₄, HC=N). ¹³C{¹H} NMR (CDCl₃): δ 13.5 (br s, SMe), 32.9 (d, ${}^{2}J_{CP_{2}} = {}^{2}J_{CP_{3}} = 13$ Hz, Me², Me³), 39.4 (s, Me¹), 57.2 (d, ${}^{1}J_{CP'_{1}} = 73$ Hz, CH₂), 120.3 (s, C₀²), 120.6 (q, ${}^{1}J_{CF} =$ 321 Hz, CF₃), 120.7 (br s, C_1^2), 121.2 (d, ${}^{3}J_{CP_3} = 4$ Hz, C_3^2), 121.5 (d, ${}^{3}J_{CP_{2}} = 4$ Hz, $C_{2}{}^{2}$), 124.5 (br d, ${}^{1}J_{CP_{1}} = 102$ Hz, $C_{1}{}^{i}$), 125.3 (s, $C_{3}{}^{4}$), 127.2 (s, C_0^3), 128.2 (s, C_2^3), 128.9 (s, C_1^3), 129.4 (s, C_3^3), 129.5 (d, ${}^{3}J_{CP'_{1}} = 13$ Hz, $C_{1}{}^{m}$), 131.4 (d, ${}^{2}J_{CP'_{1}} = 10$ Hz, $C_{1}{}^{o}$), 132.2 (s, $C_{2}{}^{4}$), 132.8 (s, C_0^4), 133.6 (s, C_1^4), 133.9 (s, C_1^p), 138.5 (d, ${}^3J_{CP_2} = {}^3J_{CP_3} =$ 14 Hz, (HC=N)₁, (HC=N)₂), 149.6 (d, ${}^{2}J_{CP_{1}} = 11$ Hz, C₁¹), 149.6 (s, C_0^{1}), 150.4 (d, ${}^{2}J_{CP_3} = 7$ Hz, C_3^{1}), 151.1 (d, ${}^{2}J_{CP_2} = 6$ Hz, C_2^{1}) ((HC= N)₀ not detected). ${}^{19}F{}^{1}H$ NMR (CDCl₃): -1.96 (s, CF₃). Anal. Calcd for $C_{714}H_{666}N_{93}O_{108}P_{51}S_{48}F_{18}$: C, 54.49; H, 4.26; N, 8.28. Found: C, 54.18; H, 4.11; N, 8.11.

11-[G4] (not isolated). ³¹P{¹H} NMR (CH₂Cl₂): δ 8.7 (d, ²J_{P'3P3} = 40.0 Hz, P'₃), 14.2 (d, ²J_{P'0P0} = 41.0 Hz, P'₀), 62.1 (s, P₄), 62.5 (s, P₁), 62.6 (s, P₂), 144.1 (d, ²J_{P0P'0} = 41.0 Hz, P₀), 144.3 (d, ²J_{P3P'3} = 40.0 Hz, P₃) ppm.

12-[G_2]: (not isolated). ³¹P{¹H} NMR (CH₂Cl₂): δ 8.0 (s, P₀), 8.6 (d, ²*J*_{P1P1} = 38.2 Hz, P'₁), 61.6 (s, P₂), 144.2 (d, ²*J*_{P1P1} = 38.2 Hz, P₁) ppm.

12-[G₃]: (not isolated). ³¹P{¹H} NMR (CH₂Cl₂): δ 8.1 (br s, P₀), 8.7 (d, ²*J*_{P'1P1} = 38 Hz, P'₁), 62.2 (s, P₂), 62.3 (s, P₃), 144.1 (d, ²*J*_{P1P'1} = 38 Hz, P₁) ppm.

15-[G₂]: 91% yield. ³¹P{¹H} NMR (CD₂Cl₂): δ 7.4 (s, P₀), 17.4 (d, ²J_{P'1P1} = 23 Hz, P'1), 27.0 (d, ²J_{P1P1} = 23 Hz, P1), 61.5 (s, P₂) ppm. ¹H NMR (CD₂Cl₂): δ 2.74 (d, ²J_{HP1} = 10.1 Hz, 18 H, Me-P1), 2.92 (br s, 18 H, Me¹), 3.35 (d, ³J_{HP2} = 10.3 Hz, 36 H, Me²), 4.80 (br s, 12 H, CH₂P'1), 6.73-7.84 (m, 270 H, C₆H₄, C₆H₅, CH=N) ppm. ¹³C{¹H} NMR (CD₂Cl₂): 14.7 (d, ¹J_{CP1} = 136 Hz, Me-P1), 33.8 (d, ²J_{CP2} = 12 Hz, Me²), 40.4 (s, Me¹), 58.3 (d, ¹J_{CP1} = 72 Hz, CH₂P'1), 121.4 (s, C₀²), 121.9 (d, ³J_{CP1} = ³J_{CP2} = 5 Hz, C₁², C₂²), 126.1 (s, C₂⁴), 126.3 (br d, ¹J_{CP1} = 104 Hz, C₁¹), 128.9 (s, C₀³), 129.5 (s, C₁³), 130.0 (d, ³J_{CP1} = 14 Hz, C₁^m), 130.3 (s, C₂⁴), 134.2 (s, C₁⁴), 134.6 (s, (CH=N)₀), 139.0 (d, ³J_{CP2} = 7 Hz, C₂¹), 151.8 (d, ¹J_{CP0} = 6 Hz, C₀¹) ppm. Anal. Calcd for C₃₇₂H₃₅₄N₄₅O₄₂P₂₇S₁₂I₆: C, 55.09; H, 4.40; N, 7.72. Found: C, 54.89; H, 4.36; N, 7.61.

16-[G₂]: 91% yield. ³¹P{¹H} NMR (CD₃COCD₃): δ 8.0 (s, P₀), 17.3 (d, ²J_{P'1P1} = 17 Hz, P'₁), 22.2 (d, ²J_{P1P'1} = 17 Hz, P₁), 61.4 (s, P₂) ppm. ¹H NMR (CD₃COCD₃): 2.99 (s, 18 H, Me¹), 3.41 (d, ³J_{HP2} = 10.4 Hz, 36 H, Me²), 3.65 (br m, 12 H, CH₂P₁), 4.95 (br s, 12 H, CH₂P'₁), 5.27 (br m, 6 H, H_B), 5.44 (br dd, ³J_{HcHa} = 16 Hz, ⁴J_{HcP} = 5 Hz, 6 H, H_C), 5.86 (br m, 6 H, H_A), 6.99–8.00 (m, 270 H, C₆H₄, C₆H₅, CH=N) ppm. ¹³C{¹H} NMR (CD₃COCD₃): δ 33.0 (d, ¹J_{CP0} = 140 Hz, CH₂P₁), 33.1 (d, ²J_{CP2} = 13 Hz, Me²), 40.0 (s, Me¹), 56.4 (d, ¹J_{CP1} = 68 Hz, CH₂P'₁), 120.6 (br s, C₀²), 121.4 (d, ³J_{CP2} = 5 Hz, C₂²), 121.7 (br s, C₁²), 123.4 (d, ${}^{3}J_{CP_{1}} = 17$ Hz, CH₂=), 125.0 (d, ${}^{2}J_{CP_{1}} = 12$ Hz, CH_A), 125.5 (s, C₂⁴), 126.3 (br d, ${}^{1}J_{CP_{1}} = 104$ Hz, C₁ⁱ), 127.2 (s, C₀³), 128.5 (s, C₁³), 129.3 (d, ${}^{3}J_{CP_{1}} = 11$ Hz, C₁^m), 129.8 (s, C₂³), 131.2 (s, (CH=N)₀), 131.7 (d, ${}^{2}J_{CP_{1}} = 11$ Hz, C₁^o), 132.4 (s, C₁⁴), 133.8 (s, C₁^p, C₀⁴), 140.0 (d, ${}^{3}J_{CP_{2}} = 14$ Hz, (CH=N)₁), 150.1 (d, ${}^{2}J_{CP_{0}} = 12$ Hz, C₀¹), 150.9 (d, ${}^{2}J_{CP_{2}} = 7$ Hz, C₂¹), 151.5 (d, ${}^{2}J_{CP_{1}} = 7$ Hz, C₁¹) ppm. Anal. Calcd for C₃₈₄H₃₆₆N₄₅O₄₂P₂₇S₁₂I₆: C, 55.80; H, 4.46; N, 7.63. Found: C, 55.69; H, 4.37; N, 7.52.

17: 88% yield. ${}^{31}P{}^{1}H$ NMR (THF): δ 15.5 (d, ${}^{2}J_{PP} = 32$ Hz, P'₀), 53.0 (d, ${}^{2}J_{PP} = 32$ Hz, P₀). ${}^{1}H$ NMR (CDCl₃): δ 2.20 (d, ${}^{3}J_{HP'_{0}} = 14$ Hz, 3 H, CH₃), 7.00–7.65 (m, 20 H, C₆H₅). ${}^{13}C{}^{1}H$ NMR (CDCl₃): δ 14.6 (d, ${}^{2}J_{CP'_{0}} = 67$ Hz, CH₃), 121.7 (d, ${}^{3}J_{CP_{0}} = 4$ Hz, C₀²), 124.2 (s, C₀⁴), 128.8 (d, ${}^{3}J_{CP'_{0}} = 13$ Hz, C₀^m), 129.1 (s, C₀³), 130.6 (dd, ${}^{1}J_{CP'_{0}} = 108$ Hz, ${}^{3}J_{CP_{0}} = 5$ Hz, C₀¹), 131.1 (d, ${}^{2}J_{CP'_{0}} = 11$ Hz, C₀^o), 132.3 (d, ${}^{4}J_{CP'_{0}} = 3$ Hz, C₀^p), 152.1 (d, ${}^{2}J_{CP_{0}} = 8$ Hz, C₀¹). Anal. Calcd for C₂₅H₂₃NO₂P₂S: C, 64.79; H, 5.00; N, 3.02. Found: C, 64.98; H, 4.95; N, 2.97.

18: (not isolated). ${}^{31}P{}^{1}H{}$ NMR (CH₂Cl₂): δ 9.9 (d, ${}^{2}J_{PP} = 32$ Hz, P'₀), 143.9 (d, ${}^{2}J_{PP} = 32$ Hz, P₀).

19: 85% yield. ³¹P{¹H} NMR (CD₃COCD₃): δ 27.3 (d, ²J_{PP} = 20.3 Hz, P₀ or P'₀), 28.9 (d, ²J_{PP} = 20.3 Hz, P'₀ or P₀). ¹H NMR (CD₃COCD₃): δ 2.57 (d, ²J_{HP} = 13.4 Hz, 3 H, CH₃), 3.87 (dddd, ²J_{HP} = 20.1 Hz, ³J_{HH_A} = 7.3 Hz, ⁴J_{HH_B} \approx ⁴J_{HH_C} \approx 1.1 Hz, 2 H, CH₂), 5.52 (dddt, ³J_{H_BH_A} = 10.2 Hz, ⁴J_{HBP} = 5.1 Hz, ²J_{HBH_C} \approx ⁴J_{H_BCH₂ \approx 1.2 Hz, 1 H, H_B), 5.64 (dddt, ³J_{H_CH_A} = 16.8 Hz, ⁴J_{H_CP} = 6.1 Hz, ²J_{H_CH_B} \approx ⁴J_{H_CCH₂} \approx 1.3 Hz, 1 H, H_C), 6.03 (dddt, ³J_{H_AH_C} = 16.8 Hz, ³J_{H_AH_B} = 10.2 Hz, ³J_{H_ACH₂} \approx ³J_{H_ACH₂ \approx ³J_{H_AP} \approx 7.3 Hz, 1 H, H_A), 7.20–7.90 (m, 20 H, C₆H₅). ¹³C{¹H} NMR (CD₃COCD₃): δ 15.8 (d, ¹J_{CP0} = 68 Hz, CH₃), 33.2 (d, ¹J_{CP0} = 134 Hz, CH₂), 121.6 (d, ³J_{CP0} = 4 Hz, C₀²), 123.3 (d, ³J_{CP0} = 16 Hz, CH₂=), 125.4 (d, ²J_{CP0} = 13 Hz, CH_A), 126.9 (s, C₀⁴), 128.2 (dd, ¹J_{CP0} = 108 Hz, ³J_{CP0} = 4 Hz, C₀⁵), 130.9 (s, C₀³), 131.4 (d, ³J_{CP0} = 12 Hz, C₀⁰), 133.7 (d, ⁴J_{CP0} = 3 Hz, C₀^p), 149.9 (d, ²J_{CP0} = 12 Hz, C₀¹). Anal. Calcd for C₂₈H₂₈NO₂P₂I: C, 56.11; H, 4.71; N, 2.34. Found: C, 55.98; H, 4.63; N, 2.27.}}

20: 91% yield. ³¹P{¹H} NMR (CDCl₃): δ -7.7 (d, ²*J*_{PP} = 16 Hz, P₀), 15.3 (d, ²*J*_{PP} = 16 Hz, P'₀). ¹H NMR (CDCl₃): δ 1.95 (d, ³*J*_{HP} = 13.3 Hz, 3H, CH₃), 6.80-7.80 (m, 24 H, C₆H₅, C₆H₄). ¹³C{¹H} NMR (CDCl₃): δ 15.0 (d, ¹*J*_{CP'0} = 69 Hz, CH₃), 121.0 (d, ³*J*_{CP0} = 5 Hz, C₀²), 123.3 (d, ³*J*_{CP0} = 21 Hz, C'^o), 124.2 (s, C₀⁴), 126.3 (s, C'^m), 126.9 (s, C'^p), 128.7 (d, ³*J*_{CP0} = 5 Hz, C₀¹), 130.8 (d, ²*J*_{CP0} = 10 Hz, C₀^o), 132.3 (br s, C₀^p), 133.7 (s, C=S), 149.8 (br s, C'ⁱ), 151.7 (d, ²*J*_{CP0} = 9 Hz, C₀¹). Anal. Calcd for C₃₂H₂₇N₃O₂P₂S: C, 54.40; H, 3.85; N, 5.95. Found: C, 54.29; H, 3.80; N, 5.84.

21-[G₄]: 89% yield. ³¹P{¹H} NMR (CDCl₃): δ -10.4 (d, ²J_{P3P'3} = 31.1 Hz, P3), -8.6 (d, ${}^{2}J_{P_{0}P'_{0}} = 30.5$ Hz, P₀) 17.5 (d, ${}^{2}J_{P'_{0}P_{0}} = 30.5$ Hz, P'_{0} , 18.2 (d, ${}^{2}J_{P'_{3}P_{3}} = 31.1 \text{ Hz}$, P'_{3}), 62.3 (s, P_{4}), 62.8 (s, P_{1} , P_{2}) ppm. ¹H NMR (CDCl₃): δ 2.71 (s, 48 H, Me³), 3.29 (d, ³J_{HP1} = ³J_{HP2} = ${}^{3}J_{\text{HP}_{4}} = 8.9 \text{ Hz}, \text{ Me}^{1}, \text{ Me}^{2}, \text{ Me}^{4}), 4.59 \text{ (m, 32 H, CH}_{2}\text{P}'_{3}), 6.76-7.64$ (m, 640 H, C₆H₄, C₆H₅, CH=N) ppm. ¹³C{¹H} NMR (CDCl₃): 20.5 (br s, (CH₂)₃), 27.1 (d, ${}^{1}J_{CP'_{0}} = 73$ Hz, (CH₂)¹), 29.4 (d, ${}^{2}J_{CP'_{0}} = 17$ Hz, $(CH_2)^2$), 32.9 (br d, ${}^2J_{CP} = 12$ Hz, Me¹, Me², Me⁴), 39.0 (d, ${}^3J_{CP'_3} = 6$ Hz, Me³), 57.0 (d, ${}^{1}J_{CP'_{3}} = 75$ Hz, CH₂P'₃), 120.3 (d, ${}^{3}J_{CP_{2}} = 3$ Hz, $C_{2^{2}}$), 121.0 (br s, $C_{0^{2}}$, $C_{1^{2}}$), 121.1 (d, ${}^{3}J_{CP_{4}} = 4$ Hz, $C_{4^{2}}$), 121.2 (br s, $C_{3^{2}}$), 121.8 (br d, ${}^{3}J_{CP_{3}} = 20$ Hz, C'°, C''°), 125.3 (s, C_{4}^{4}), 126.8 (br s, C_2^3 , C'^m, C''^m), 127.1 (s, C'^p, C''^p), 127.4 (dd, ${}^{1}J_{CP'_3} = 104 \text{ Hz}, {}^{3}J_{CP_3} =$ 6 Hz, C_3^{i}), 128.5 (s, C_1^{3} , C_3^{3}), 129.1 (d, ${}^{3}J_{CP'_0} = {}^{3}J_{CP'_3} = 13$ Hz, C_0^{m} , C_3^{m}), 129.5 (s, C_4^{3}), 131.0 (s, C_3^{4}), 131.2 (s, C_2^{4}), 131.7 (d, ${}^2J_{CP'_0} =$ ${}^{2}J_{CP'_{3}} = 11 \text{ Hz}, C_{0}{}^{\circ}, C_{3}{}^{\circ}), 131.8 \text{ (s, } C_{0}{}^{p}, C_{3}{}^{p}), 133.4 \text{ (s, } (CH=N)_{2}), 133.5$ (s, N=C=S), 137.8 (d, ${}^{3}J_{CP_{4}} = 13$ Hz, (CH=N)3), 139.0 (br d, (CH= N)₁), 149.6 (d, ${}^{3}J_{CP_{3}} = 9$ Hz, C₃¹), 149.8 (d, ${}^{2}J_{CP_{2}} = 7$ Hz, C₂¹), 150.5 (d, ${}^{3}J_{CP_{4}} = 7$ Hz, C₄¹), 151.1 (br s, C'ⁱ, C''ⁱ), 151.2 (d, ${}^{3}J_{CP_{1}} = 7$ Hz, C_1^{1} ppm (C_1^{4} , C_0^{1} , C_0^{3} , C_0^{i} , (CH_2)¹, (CH_2)², (CH_2)³, (CH=N)_{0,1} not detected). IR (KBr): 2115 (ν_{NCS}) cm⁻¹. Anal. Calcd for $C_{1228}H_{1096}N_{174}O_{124}P_{80}S_{62}\!\!:\ C,\,59.61;\,H,\,4.46;\,N,\,9.85.\,Found:\,\,C,\,59.30;$ H, 4.18; N, 9.58.

22-[G₂]: 94% yield. ³¹P{¹H} NMR (CDCl₃): δ -9.4 (d, ²J_{P1P1} = 15.0 Hz, P₁), 7.9 (s, P₀), 14.3 (d, ²J_{P1P1} = 15.0 Hz, P'₁), 61.7 (s, P₂) ppm. ¹H NMR (CDCl₃): δ 2.66 (br s, 18 H, Me¹), 3.28 (d, ³J_{HP2} = 10.3 Hz, 36 H, Me²), 4.6 (br s, 12 H, CH₂), 6.75-7.51 (m, 294 H, C₆H₄, C₆H₅, CH=N) ppm. ¹³C{¹H} NMR (CDCl₃): 33.8 (d, ²J_{CP2} =

13 Hz, Me²), 38.8 (s, Me¹), 57.5 (d, ${}^{1}J_{CP_{1}} = 74$ Hz, CH₂), 120.4 (br s, C₀²), 121.2 (d, ${}^{3}J_{CP_{1}} = {}^{3}J_{CP_{2}} = 4$ Hz, C₁², C₂²), 122.8 (br d, C'^o), 125.2 (s, C₂⁴), 126.4 (s, C₀³, C'^m), 126.8 (dd, ${}^{1}J_{CP_{1}} = 100$ Hz, ${}^{3}J_{CP_{1}} = 4$ Hz, C₁ⁱ), 127.0 (s, C'^p), 127.9 (s, C₁³), 128.4 (d, ${}^{3}J_{CP_{1}} = 12$ Hz, C₁^m), 129.4 (s, C₂³), 130.9 (m, C₁⁴, (CH=N)₀), 131.9 (d, ${}^{2}J_{CP_{1}} = 10$ Hz, C₁^o), 132.4 (s, C₁^p), 133.1 (s, C₀⁴), 133.3 (s, N=C=S), 138.6 (d, ${}^{3}J_{CP_{2}} = 14$ Hz, (CH=N)₁), 149.6 (br s, C₀¹), 150.5 (d, ${}^{2}J_{CP_{2}} = 7$ Hz, C₂¹), 151.1 (br s, C'ⁱ), 152.4 (br d, C₁¹) ppm. IR (KBr): 2116 (ν_{NCS}) cm⁻¹. Anal. Calcd for C₄₀₈H₃₆₀N₅₇O₄₂P₂₇S₁₈: C, 60.15; H, 4.45; N, 9.80. Found: C, 59.99; H, 4.32; N, 9.69.

22-[G₃]: 93% yield. ³¹P{¹H} NMR (CDCl₃): δ -9.8 (d, ²J_{P1P'1} = 14 Hz, P₁), 7.9 (s, P₀), 14.0 (d, ${}^{2}J_{P'_{1}P_{1}} = 14$ Hz, P'₁), 61.7 (s, P₂, P₃) ppm. ¹H NMR (CDCl₃): δ 2.63 (br s, 18 H, Me¹), 3.30 (m, 108 H, Me², Me³), 4.56 (br s, 12 H, CH₂), 6.88-7.68 (m, 336 H, C₆H₄, C₆H₅, CH=N) ppm. ¹³C{¹H} NMR (CDCl₃): 32.8 (d, ${}^{2}J_{CP_{2}} = {}^{2}J_{CP_{3}} = 13$ Hz, Me², Me³), 38.8 (s, Me¹), 120.6 (br d, ${}^{3}J_{CP_{0}} = 3$ Hz, C₀²), 121.1 (d, ${}^{3}J_{CP_{3}} = 3$ Hz, C₃²), 121.5 (m, C₁², C₂²), 123.4 (d, ${}^{3}J_{CP_{1}} = 19$ Hz, C'°), 125.2 (s, C₃⁴), 126.2 (s, C'^m), 126.5 (s, C₀³), 126.9 (s, C'^p), 128.0 (s, $C_1{}^3$, $C_2{}^3$), 128.4 (d, ${}^3J_{CP'_1} = 12$ Hz, $C_1{}^m$), 129.3 (s, $C_3{}^3$), 130.8 (br s, C_0^4 , (CH=N)₀), 131.8 (d, ${}^2J_{CP'_1} = 11$ Hz, C_1°), 132.1 (br s, C_2^4 , C_1^{p}), 132.4 (s, C_1^4), 133.1 (s, N=C=S), 138.3 (d, ${}^{3}J_{CP_3} = 14$ Hz, (CH= N)₂), 139.1 (d, ${}^{3}J_{CP_{2}} = 14$ Hz, (CH=N)₁), 149.5 (br s, C₀¹), 150.3 (d, ${}^{2}J_{CP_{3}} = 7$ Hz, $C_{3}{}^{1}$), 151.0 (d, ${}^{2}J_{CP_{2}} = 6$ Hz, $C_{2}{}^{1}$), 151.8 (d, ${}^{2}J_{CP_{1}} = 7$ Hz, C_1^{1}) ppm (C_1^{i} , CH₂, C'ⁱ not detected). IR (KBr): 2115 (ν_{NCS}) cm⁻¹. Anal. Calcd for C744H672N105O90P51S42: C, 57.84; H, 4.38; N, 9.52. Found: C, 57.99; H, 4.45; N, 9.40.

23-[G₃]: 91% yield. ³¹P{¹H} NMR (CDCl₃): δ 8.5 (s, P₀), 9.4 (d, ${}^{2}J_{P_{1}P_{1}} = 26$ Hz, P₁), 16.0 (d, ${}^{2}J_{P_{1}P_{1}} = 26$ Hz, P'₁), 62.5 (s, P₂), 62.8 (s, P₃) ppm. ¹H NMR (CDCl₃): δ 1.30 (m, 12 H, C^bH₂), 2.80 (m, 42 H, $C^{a}H_{2}$, $C^{c}H_{2}$, Me^{1}), 3.29 (d, ${}^{3}J_{HP_{2}} = {}^{3}J_{HP_{3}} = 10$ Hz, 108 H, Me^{2} , Me^{3}), 4.83 (m, 12 H, $CH_2P'_1$), 6.80–7.68 (m, 510 H, C_6H_5 , C_6H_4 , CH=N) ppm. ¹³C{¹H} NMR (CDCl₃): 24.8 (s, C^bH₂), 32.9 (d, ${}^{2}J_{CP_{2}} = {}^{2}J_{CP_{3}} =$ 13 Hz, Me², Me³), 38.9 (br s, C^cH₂, Me¹), 41.5 (br s, C^aH₂), 57.7 (dd, ${}^{1}J_{CP'_{1}} = 70 \text{ Hz}, {}^{3}J_{CP_{1}} = 5 \text{ Hz}, CH_{2}P'_{1}), 120.5 \text{ (br s, } C_{0}{}^{2}), 121.2 \text{ (d, } {}^{3}J_{CP_{3}})$ = 5 Hz, C_3^2), 121.6 (s, C_1^2 , C_2^2), 125.2 (s, C_3^4), 126.2 (br d, ${}^1J_{CP'_1}$ = 105 Hz, C_1^{i}), 126.4 (s, C_0^{3}), 128.0 (s, C_1^{3} , C_2^{3}), 128.8 (d, ${}^{3}J_{CP'_1} = 12$ Hz, C₁^m), 129.3 (s, C₃³), 129.8 (s, C₀⁴), 130.5 (s, (CH=N)₀), 131.7 (d, ${}^{2}J_{CP'_{1}} = 10$ Hz, $C_{1}{}^{\circ}$), 132.0 (s, $C_{1}{}^{4}$), 132.1 (s, $C_{2}{}^{4}$), 132.9 (s, $C_{1}{}^{p}$), 138.4 (d, ${}^{3}J_{CP_{3}} = 14$ Hz, (CH=N)₂), 139.0 (d, ${}^{3}J_{CP_{2}} = 13$ Hz, (CH=N)₁), 149.4 (d, ${}^{2}J_{C_{0}1P_{0}} = 7$ Hz, $C_{0}{}^{1}$), 150.4 (d, ${}^{2}J_{CP_{3}} = 7$ Hz, $C_{3}{}^{1}$), 151.1 (d, ${}^{2}J_{CP_{1}} = {}^{2}J_{CP_{2}} = 7$ Hz, $C_{1}{}^{1}$, $C_{2}{}^{1}$) ppm. Anal. Calcd for C720H696N105O90P51S36: C, 57.67; H, 4.68; N, 9.81. Found: C, 57.51; H, 4.52; N, 9.67.

24-[G₃]: 95% yield. ³¹P{¹H} NMR (CDCl₃): δ -12.4 (dd, ²J_{P1P'1} = 62 Hz, ${}^{2}J_{P_{1}P'_{1}}$ = 21 Hz, P₁), 8.0 (br s, P₀), 13.4 (d, ${}^{2}J_{P'_{1}P_{1}}$ = 21 Hz, P"1), 44.7 (d, ${}^{2}J_{P'_{1}P_{1}} = 62$ Hz, P'_1), 62.6 (s, P_2), 62.7 (s, P3) ppm. ¹H NMR (CDCl₃): δ 2.71 (d, 18 H, Me¹), 3.30 (m, 108 H, Me², Me³), 4.60 (br s, 12 H, CH₂), 6.80-7.70 (m, 558 H, C₆H₅, C₆H₄, HC=N), 9.73 (s, 12 H, CHO) ppm. ¹³C{¹H} NMR (CDCl₃): δ 32.9 (d, ²*J*_{CP} = 13 Hz, Me², Me³), 39.0 (s, Me¹), 58.7 (d, ${}^{1}J_{CP'_{1}} = 78$ Hz, CH₂), 120.5 (s, C_0^2), 121.2 (d, ${}^{3}J_{CP_3} = 4$ Hz, C_3^2), 121.6 (br s, C_1^2 , C_2^2 , C''_0), 125.3 (s, C_3^4), 126.6 (s, C_0^3), 126.9 (br d, ${}^1J_{CP'_1} = 103$ Hz, C_1^i), 128.0 (s, C_1^{3}), 128.1 (s, C_2^{3}), 128.6 (d, ${}^{3}J_{CP'_1} = 12 \text{ Hz}, C_1^{\text{m}}$), 129.4 (s, C_3^{3}), 130.9 (br s, C_1^4 , (HC=N)₀, C''^m), 131.4 (s, C''^p), 132.1 (d, ${}^2J_{CP'_1} = 7$ Hz, C_1^{o}), 132.2 (s, C_2^4 , C_1^{p}), 132.8 (s, C_0^4), 138.4 (d, ${}^{3}J_{CP_3} = 14$ Hz, (HC= N)₂), 138.9 (d, ${}^{3}J_{CP_{2}} = 13$ Hz, (HC=N)₁), 149.8 (s, C₀¹), 150.4 (d, ${}^{2}J_{CP_{3}} = 7$ Hz, $C_{3}{}^{1}$), 151.1 (d, ${}^{2}J_{CP_{2}} = 7$ Hz, $C_{2}{}^{1}$), 151.9 (d, ${}^{2}J_{CP_{1}} = 9$ Hz, $C_{1}{}^{1}$), 156.5 (d, ${}^{2}J_{CP'_{1}} = 9$ Hz, $C''{}^{i}$), 190.9 (s, CHO). IR (KBr): $(\nu_{C=O})\ cm^{-1}.$ Anal. Calcd for $C_{786}H_{708}N_{99}O_{114}P_{57}S_{42}:\ C,\ 57.29;\ H,\ 4.33;$ N, 8.42. Found: C, 57.11; H, 4.28; N, 8.27.

Preparation of 25-[G₃]. To a solution of dendrimer **24-**G₃ (0.300 g; 0.018 mmol) in THF (10 mL) was added 12 equiv of 1-amino-3-azidopropane (0.021 g, 0.218 mmol). The solution was stirred overnight at room temperature, and then evaporated to dryness. The resulting powder is washed with THF/pentane (1/5) to yield **25-**G₃ as a white powder.

25-[G₃]: 96% yield. ³¹P{¹H} NMR (CDCl₃): δ -12.7 (dd, ²J_{P1P1} = 22.0 Hz, ²J_{P1P1} = 61.0 Hz, P₁), 8.1 (br s, P₀), 13.4 (d, ²J_{P1P1} = 22.0 Hz, P'₁), 45.5 (d, ²J_{P'1P1} = 61.0 Hz, P''₁), 62.7 (s, P₂, P₃) ppm. ¹H NMR (CDCl₃): δ 1.85 (m, 24 H, C^bH₂), 2.60–2.84 (m, 42 H, Me¹, C^cH₂), 3.28 (m, 132 H, C^aH₂, Me², Me³), 4.66 (br s, 12 H, CH₂P'₁), 7.19–

7.64 (m, 558 H, C₆H₄, C₆H₅, CH=N–N), 8.10 (s, 12 H, CH=N–C) ppm. ¹³C{¹H} NMR (CDCl₃): δ 28.9 (s, C^bH₂), 32.8 (d, ²J_{CP₂} = ²J_{CP₃} = 13 Hz, Me², Me³), 38.9 (s, Me¹), 48.9 (s, C^aH₂), 57.6 (br d, ¹J_{CP'₁} = 74 Hz, CH₂P'₁), 57.7 (br s, C^cH₂), 120.5 (s, C₀²), 121.2 (br s, C₃²), 121.6 (br s, C₁², C₂², C''₀), 125.2 (s, C₃⁴), 126.4 (s, C₀³), 126.9 (br d, ¹J_{CP'₁} = 103 Hz, C₁ⁱ), 128.0 (s, C₁³), 128.1 (s, C₂³), 128.5 (d, ³J_{CP'₁} = 12 Hz, C₁^m), 128.9 (s, C''m), 129.3 (s, C₃³), 130.8 (s, C₁⁴), 131.1 (br s, (HC=N)₀), 131.9 (d, ²J_{CP'₁} = 14 Hz, C₁^o), 132.1 (br s, C₂⁴, C₁^p), 132.6 (s, C₀⁴), 138.3 (d, ³J_{CP₃} = 14 Hz, (HC=N)₂), 139.1 (d, ³J_{CP₂} = 13 Hz, (HC=N)₁), 149.7 (br s, C₀¹), 150.4 (d, ²J_{CP₃} = 7 Hz, C₃¹), 151.1 (d, ²J_{CP₂} = 7 Hz, C₂¹), 152.1 (d, ²J_{CP₁} = 9 Hz, C₁¹), 153.8 (d, ²J_{CP'₁} = 10 Hz, C''₁), 160.7 (s, CH=N–C). IR (KBr): 2095 (ν_{N3}) cm⁻¹. Anal. Calcd for C₈₂₂H₇₈₀N₁₄₇O₁₀₂P₅₇S₄₂: C, 56.54; H, 4.50; N, 11.9. Found: C, 56.38; H, 4.33; N, 11.67.

Preparation of 26-[G₃]. To a solution of dendrimer **24-G**₃ (0.350 g; 0.021 mmol) in THF (10 mL) was added 12 equiv (0.072 g, 0.240 mmol) of 4'-amino[15]crown-5. The solution was refluxed for 1 week, and then evaporated to dryness. The resulting powder was washed with THF/pentane (1/5) to yield **26-G**₃ as a pale yellow powder.

26-[G₃]: 93% yield. ³¹P{¹H} NMR (CDCl₃): δ -12.6 (dd, ²J_{P1P'1} = 20.0 Hz, ${}^{2}J_{P_{1}P''_{1}}$ = 60.0 Hz, P₁), 8.3 (s, P₀), 13.6 (d, ${}^{2}J_{P'_{1}P_{1}}$ = 20.0 Hz, P'₁), 46.0 (d, ${}^{2}J_{P''_{1}P_{1}} = 60.0$ Hz, P''₁), 62.7 (s, P₂, P₃) ppm. ¹H NMR (CDCl₃): δ 2.65 (s, 18 H, Me¹), 3.278 (m, 108 H, Me², Me³), 3.60-4.10 (m, 192 H, CH₂O), 4.63 (br s, 12 H, CH₂P'₁), 6.10-6.80 (m, 36 H, C₆H₃), 7.10-7.70 (m, 558 H, C₆H₄, C₆H₅, CH=N-N), 8.10 (br s, 12 H, CH=N-C) ppm. ¹³C{¹H} NMR (CDCl₃): δ 32.8 (d, ²J_{CP₂} = ${}^{2}J_{CP_{3}} = 13$ Hz, Me², Me³), 38.9 (br s, Me¹), 68.1-70.3 (m, CH₂O), 107.2 (s, C_6H_3), 112.5 (s, C_6H_3), 114.0 (s, C_6H_3), 120.5 (br s, C_0^2), 121.2 (br $\overline{s}, \overline{C_3}^2$), 121.6 (br $\overline{s}, \overline{C_1}^2, C_2^2, C''^{o}$), 125.2 (s, C_3^4), 126.4 (br s, C_0^3), 127.8 (br s, C_1^3), 128.0 (s, C_2^3), 128.5 (d, ${}^3J_{CP'_1} = 13$ Hz, C_1^m), 128.7 (s, C"m), 129.3 (s, C₃³), 130.6 (s, C₁⁴), 131.2 (br s, (HC=N)₀), 132.0 (br s, C_1°), 132.1 (br s, C_2^4 , C_1^{p}), 133.4 (s, C_0^4), 138.3 (d, ${}^{3}J_{CP_3}$ = 13 Hz, (HC=N)₂), 138.9 (br d, ${}^{3}J_{CP_{2}}$ = 12 Hz, (HC=N)1), 145.0 (s, C₆H₃), 147.6 (s, C₆H₃), 149.1 (s, C₆H₃), 149.5 (br s, C₀¹), 150.3 (d, ${}^{2}J_{CP_{3}} = 7$ Hz, $C_{3}{}^{1}$), 151.0 (d, ${}^{2}J_{CP_{2}} = 7$ Hz, $C_{2}{}^{1}$), 152.0 (br s, $C_{1}{}^{1}$), 152.6 (br s, C''ⁱ), 156.9 (s, CH=N-C). (CH₂P'₁, C_1^{i} not detected). Anal. Calcd for $C_{954}H_{936}N_{111}O_{162}P_{57}S_{42}$: C, 58.28; H, 4.80; N, 7.91. Found: C, 56.08; H, 4.61; N, 7.76.

X-ray Structure Determination for Compounds 5-[G₁] [$C_{64}H_{70}N_{10}-O_4S_6P_8Cl_8$][CF₃SO₃]₂, 6(CH₂Cl₂) and 8-[G₁] [$C_{68}H_{70}N_{10}O_4S_6P_8Cl_8$]-[CF₃SO₃]₂, 2(CH₂Cl₂), 4(CH₃OH). Data were collected on a Stoe Imaging Plate Diffraction System (IPDS) equipped with an Oxford Cryosystems cooler device for both compounds. The crystal-to-detector distance was 80 mm. Crystal decay was monitored by measuring 200 reflections by image. The final unit cell parameters were obtained by the least-squares refinement of 5000 reflections, any important fluctuations of the intensity were observed over the course of the data collection.

For **5-[G₁]** and **8-[G₁]** the structures were solved by direct methods $(SIR92)^{19}$ and refined by least-squares procedures on F_{obs} . All hydrogen atoms were located on a difference Fourier map, but they were introduced in calculation in idealized positions (d(C-H)=0.96 Å), their atomic coordinates were recalculated after each cycle of refinement. They were given isotropic thermal parameters 20% higher than those of the carbon atoms to which they were connected. All non hydrogen atoms were anisotropically refined excepted the C atoms of the allene of **8-[G₁]** and the molecules of methanol. For **5-[G₁]**, the molecules of the triflate anions and the C atoms of the dichloromethane were isotropically refined.

The models were easily located for both structures, excepted concerning the allene chain for **8-[G1]**. In fact, around this hydrocarbon chain, the electron density seems highly disordered, a best model to fit this electron density was to consider the last C atom of the allene chain C(6) distributed on two sites with a ratio (60/40). Some solvents (CH₂Cl₂ for compound **5-[G1]**, CH₂Cl₂ and CH₃OH for compound **8-[G1]**) were located on difference Fourier maps. The electron density around these molecules is strongly disordered and appears as a diffuse spread. Finally the differences Fourier synthesis still show some residual electron

⁽¹⁹⁾ Altomare, A.; Cascarano, G.; Giacovazzo, G.; Guagliardi, A.; Burla, M. C.; Polidori, G.; Camalli, M. J. Appl. Crystallogr. **1994**, 27, 435.

density in these regions which could not be fitted to any model. Leastsquares refinement were carried out by minimizing the function $\Sigma w(|F_o| - |F_c|)^2$, where F_o and F_c are the observed and calculated structure factors. A weighting scheme was used in the last refinement cycles where weights are calculated from the following expression: w =[weight][1 - $(\Delta(F)/6\sigma(F)]^{2.20}$ Models reached convergence with Rw = $[\Sigma w(|F_o| - |F_c|)^2/\Sigma(|F_o|)^2]^{1/2}$ and Rw = $[\Sigma w(|F_o| - ||F_c|)^2/\Sigma(|F_o|)^2]^{1/2}$ R (Rw) were 0.095 (0.097) with 3789 reflections used [I >3s(*I*)] and 555 parameters refined for **5-**[**G**₁], and 0.083 (0.093) with 4115 reflections used [I > 2.5s(I)] and 606 parameters refined for **8-**[**G**₁]. Further details of data collection and refinement are given in Supporting Information. The calculation were performed with a CRYSTALS programs²¹ running on a PC. The drawing of the molecules was realized with the aid of CAMERON.²² The atomic scattering factors were taken from the *International Tables for X-ray Crystallography*.²³

(20) Carruthers, J. R.; Watkin, D. J. *Acta Crystallogr.* **1979**, *A35*, 698. (21) Watkin, D. J.; Prout, C. K.; Carruthers, R. J.; Betteridge, P. 1996

(23) International Tables for X-ray Crystallography; The Kynoch Press: Birmingham, England, 1974; Vol. IV.

Further details on the crystal structure investigation are available on request from the Director of the Cambridge Crystallographic Data Center, 12 Union Road, Cambridge CB21EZ UK, on quoting the full journal citation.

Experimental section concerning the synthesis of dendrimers and spectroscopic data of 1-[G1], 1-[G'_1], 1-[G_2], 1-[G'_2], 1-[G''_2], 1-[G''_2], 1-[G''_2], 2-[G_1], 2-[G_2], 3-[G''_0], 3-[G'''_0], 3-[G''_1], 3-[G'_2], 3-[G_3], 5-[G_1], 6-[G_1], 7-[G_1], 8-[G_1], 9-[G_1], 9-[G_2], 11-[G_1], 12-[G_2], 13-[G_2], 14-[G_2], and 21-[G_1] (35 pages). See any current masthead page for ordering information and Web access instructions.

Acknowledgment. Thanks are due to CNRS for financial support and to DGA (France) for a grant to one of us (C.T.)

Supporting Information Available: Experimental procedures and results as well as tables of crystal data, fractional atomic coordinates, isotropic and anisotropic thermal parameters, interatomic distances, and bond angles (35 pages). See any current masthead page for ordering information and Web access instructions.

JA982778E

 ⁽²¹⁾ Watkin, D. J., Flour, C. K., Carluters, K. J., Betterlage, T. 1996
 CRYSTALS, Issue 10; Chemical Crystallography Laboratory: Oxford, U.K.
 (22) Watkin, D. J.; Prout, C. K.; Pearce, L. J. 1996 *CAMERON*; Chemical Crystallography Laboratory: Oxford, U.K.